Hi! Please find bellow the outputs. When I was using sessions stored in cache (specially in Memcached) all things were working good until I wanted to upload a data set with larger volume of data : it wasn't be possible to put them in cache.
Training dataset uploaded : Coffee training dataset saved in django session : [[0,-0.51841899,-0.48588363,-0.50500747,-0.56018294,-0.63629941,-0.75322902,-0.82722915,-0.85976467,-0.90632072,-0.92379648,-0.93321222,-0.93442926,-0.92078716,-0.93657191,-0.95599685,-0.95934101,-0.96940599,-0.9824055,-0.97659952,-0.96252576,-0.97031893,-0.98199237,-0.9874616,-1.0152202,-1.0480611,-1.0592421,-1.0498854,-1.0467321,-1.0643986,-1.0877935,-1.0993351,-1.0850813,-1.0641912,-1.0545229,-1.044503,-1.0236367,-0.99421712,-0.96371982,-0.92237217,-0.86616903,-0.81351574,-0.77266759,-0.72343976,-0.66424331,-0.63424598,-0.6280451,-0.60469363,-0.56829781,-0.53778323,-0.50569966,-0.4612259,-0.38892741,-0.29296669,-0.20056328,- ... 582,-1.7619773,-1.7640397,-1.7661713,-1.7689397,-1.7722404,-1.7751282,-1.7766233,-1.7782533,-1.7809291,-1.7835006,-1.7858671,-1.7878936,-1.7896332,-1.791887,-1.7937475,-1.795334,-1.7968732]] training dataset copy saved in django session : 0 1 2 3 4 5 6 7 8 ... 278 279 280 281 282 283 284 285 286 0 0 -0.518419 -0.485884 -0.505007 -0.560183 -0.636299 -0.753229 -0.827229 -0.859765 ... -1.922313 -1.924212 -1.926997 -1.928721 -1.930026 -1.932301 -1.933631 -1.934963 -1.936007 23 1 -0.654035 -0.634715 -0.625911 -0.650577 -0.710112 -0.793933 -0.876500 -0.917085 ... -1.758149 -1.760285 -1.763167 -1.766203 -1.768161 -1.769878 -1.771651 -1.772835 -1.774231 24 1 -0.675463 -0.617801 -0.619069 -0.664476 -0.751102 -0.841188 -0.900013 -0.937926 ... -1.733537 -1.736082 -1.738777 -1.741560 -1.743612 -1.745258 -1.747073 -1 50 1 -0.674712 -0.633369 -0.648089 -0.706044 -0.763404 -0.841210 -0.926266 -0.967801 ... -1.798162 -1.800553 -1.803785 -1.806106 -1.808189 -1.810410 -1.812302 -1.814185 -1.815227 51 1 -0.637021 -0.624313 -0.602822 -0.644700 -0.735494 -0.798365 -0.866908 -0.920802 ... -1.777194 -1.779707 -1.782322 -1.784423 -1.786802 -1.789479 55 1 -0.665276 -0.636800 -0.639735 -0.687703 -0.760849 -0.839653 -0.898612 -0.923578 ... -1.780929 -1.783501 -1.785867 -1.787894 -1.789633 -1.791887 -1.793747 -1.795334 -1.796873 [56 rows x 287 columns] In upload_local_dataset Session's keys : dict_keys(['ts_dataset', 'ts_dataset_copy']) [26/Feb/2020 08:20:09] "POST /upload_dataset HTTP/1.1" 200 176589 [26/Feb/2020 08:20:13] "GET /uts_datasets HTTP/1.1" 200 35673 In cv_classification Session's keys : dict_keys([]) Internal Server Error: /cv_classification/5/FOTS/283/None/0/0 Traceback (most recent call last): File "/home/proj-guyrostan1/STAGE/tsanalysiswebapp/backend/venv/lib/python3.7/site-packages/django/core/handlers/exception.py", line 34, in inner response = get_response(request) File "/home/proj-guyrostan1/STAGE/tsanalysiswebapp/backend/venv/lib/python3.7/site-packages/django/core/handlers/base.py", line 115, in _get_response response = self.process_exception_by_middleware(e, request) File "/home/proj-guyrostan1/STAGE/tsanalysiswebapp/backend/venv/lib/python3.7/site-packages/django/core/handlers/base.py", line 113, in _get_response response = wrapped_callback(request, *callback_args, **callback_kwargs) File "/home/proj-guyrostan1/STAGE/tsanalysiswebapp/backend/djangobackend/tsanalysisapp/views.py", line 260, in cv_classification df = pd.read_json(request.session.get('ts_dataset_copy'), orient='values') File "/home/proj-guyrostan1/STAGE/tsanalysiswebapp/backend/venv/lib/python3.7/site-packages/pandas/io/json/_json.py", line 569, in read_json path_or_buf, encoding=encoding, compression=compression File "/home/proj-guyrostan1/STAGE/tsanalysiswebapp/backend/venv/lib/python3.7/site-packages/pandas/io/common.py", line 224, in get_filepath_or_buffer raise ValueError(msg.format(_type=type(filepath_or_buffer))) ValueError: Invalid file path or buffer object type: <class 'NoneType'> [26/Feb/2020 08:20:29] "GET /cv_classification/5/FOTS/283/None/0/0 HTTP/1.1" 500 84649 Le mercredi 26 février 2020 08:38:08 UTC+1, Naveen Arora a écrit : Hi, please post the output of debugging the above, print after and before in these views and also check is something else is working using request.session. @csrf_exempt def upload_local_dataset(request): if request.method == 'POST': dataset = pd.read_csv(request.FILES.get('datasetfilepath'), header=None, index_col=None) request.session['ts_datset'] = dataset.to_json(orient='values') print(dataset.to_json(orient='values')) request.session['ts_dataset_copy'] = dataset.to_json(orient='values') print(request.session['ts_dataset_copy']) return HttpResponse(dataset.to_json(orient='values')) Post output of this plus the below one def cv_classification(request, kfolds, dissimilarity_func, windows_length=0, noisy_law="", mu=0,std=0): noisy_law = noisy_law.lower() print(request.session['ts_dataset_copy']) df = pd.read_json(request.session['ts_dataset_copy'], orient='values') predictions = cv_classify(df, kfolds, dissimilarity_func, windows_length, noisy_law, mu, std) return JsonResponse(predictions, safe=False) On Tuesday, 25 February 2020 03:47:25 UTC+5:30, Guy NANA wrote: I have an angular frontend app which send file to django backend which data is setting in django session. After I send a httprequest to django backend to make ML tratements on that data and get the results. But I've a 500 sever error: keyerror 'ts_dataset_copy': KeyError: 'ts_dataset_copy' [24/Feb/2020 18:43:46] "GET /cv_classification/5/FOTS/283/None/0/0 HTTP/1.1" 500 78264. Here are my django code: Firstly I upload timeseries dataset file from angular frontend (All thing is ok) @csrf_exempt def upload_local_dataset(request): if request.method == 'POST': dataset = pd.read_csv(request.FILES.get('datasetfilepath'), header=None, index_col=None) request.session['ts_datset'] = dataset.to_json(orient='values') request.session['ts_dataset_copy'] = dataset.to_json(orient='values') return HttpResponse(dataset.to_json(orient='values')) # second httrequest that throws a server internal error def cv_classification(request, kfolds, dissimilarity_func, windows_length=0, noisy_law="", mu=0, std=0): noisy_law = noisy_law.lower() df = pd.read_json(request.session['ts_dataset_copy'], orient='values') predictions = cv_classify(df, kfolds, dissimilarity_func, windows_length, noisy_law, mu, std) return JsonResponse(predictions, safe=False) Thanks for your help! Le lundi 24 février 2020 23:17:25 UTC+1, Guy NANA a écrit : > > I have an angular frontend app which send file to django backend which > data is setting in django session. After I send a httprequest to django > backend to make ML tratements on that data and get the results. But I've a > 500 sever error: keyerror 'ts_dataset_copy': KeyError: 'ts_dataset_copy' > [24/Feb/2020 18:43:46] "GET /cv_classification/5/FOTS/283/None/0/0 > HTTP/1.1" 500 78264. Here are my django code: > > Firstly I upload timeseries dataset file from angular frontend (All thing > is ok) > @csrf_exempt > def upload_local_dataset(request): > if request.method == 'POST': > dataset = pd.read_csv(request.FILES.get('datasetfilepath'), > header=None, index_col=None) > request.session['ts_datset'] = dataset.to_json(orient='values' > ) > request.session['ts_dataset_copy'] = dataset.to_json(orient= > 'values') > > return HttpResponse(dataset.to_json(orient='values')) > > > > # second httrequest that throws a server internal error > > def cv_classification(request, kfolds, dissimilarity_func, > windows_length=0, noisy_law="", mu=0, > > std=0): > noisy_law = noisy_law.lower() > df = pd.read_json(request.session['ts_dataset_copy'], orient= > 'values') > predictions = cv_classify(df, kfolds, dissimilarity_func, > windows_length, noisy_law, mu, std) > return JsonResponse(predictions, safe=False) > > > > Thanks for your help! > -- You received this message because you are subscribed to the Google Groups "Django users" group. To unsubscribe from this group and stop receiving emails from it, send an email to django-users+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/django-users/f9873760-c8e8-4706-8709-a03b556d6394%40googlegroups.com.