Don't think you can directly, since there's no internal notion of S and N kept separately (that's the beauty of this estimator: it's simple).
However, when you have an SNR estimate, you could simply externally compute the average S+N (i.e. the average power of observed samples). Then, via S+N = N·(S/N) + N = N·SNR + N = N·(1+SNR) N = S+N/(1+SNR) S = S+N - N you could derive S and N. Best regards, Marcus On 25.10.21 11:54, Moses Browne Mwakyanjala wrote: > Hi everyone, > It seems like all estimators in MPSK_SNR_EST class, except for the SVR one > (shown below), > have signal, noise, and SNR estimations. How does one get the signal and > noise > components from the SVR estimate? > > Regards, > > Moses. > > mpsk_snr_est_svr::mpsk_snr_est_svr(doublealpha):mpsk_snr_est(alpha) > > { > > d_y1=0; > > d_y2=0; > > } > > > intmpsk_snr_est_svr::update(intnoutput_items,constgr_complex*input) > > { > > for(inti=0;i<noutput_items;i++){ > > doublex=abs(input[i+1]); > > doublex1=abs(input[i]); > > doubley1=(x*x)*(x1*x1); > > d_y1=d_alpha*y1+d_beta*d_y1; > > > doubley2=x*x*x*x; > > d_y2=d_alpha*y2+d_beta*d_y2; > > } > > returnnoutput_items; > > } > > > doublempsk_snr_est_svr::snr() > > { > > doublex=d_y1/(d_y2-d_y1); > > return10.0*log10(x-1+sqrt(x*(x-1))); > > } > > > Moses Browne Mwakyanjala > > > Founder - CEO > > *Remos Space Systems AB* > > m: +46 (0)70 278 2174__ > > a: Aurorum 1C, 977 75 __Luleå, Sweden > > w: www.remosspace.com <https://www.remosspace.com/> e: mbkit...@gmail.com > <mailto:mbkit...@gmail.com> > > image.png >