Hello, I am trying to create an OOT block similar to Delay except that if it does not receive any data for 10ms, it will reset the delay (set d_delta to the same # of samples as the initial delay) so that the next portion of received data will have a delay before it, as seen here <https://i.imgur.com/zCnuEHY.png>. The inputted data is a cc1110 formatted packet that is converted from PDU to tagged stream, GFSK modulated, then sent though the custom Delay block and transmitted and received by a USRP B210.
Here's the data received by the USRP without the custom Delay block <https://i.imgur.com/0ACjn5Q.png>, and here's the data received by the USRP with the custom Delay block <https://i.imgur.com/3qQbQDP.png>. The initial peak in the 'with custom Delay block' picture is what confuses me as I don't know why it appears there. The peak appears when the custom Delay block first receives samples after d_delta is reset. My initial thought is that it is the USRP s initializing or something but that's just a wild guess. The code for my custom Delay block can be found below. Main points of interest are the 'void queue_delay_impl::run()' function which determines if it has been 10ms since the last sample has been received and resets d_delta if so. And the else statement in the general_work function which provides delays by using memset() to insert 0's at the beginning of the data stream when d_delta is reset. #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <gnuradio/io_signature.h> #include "queue_delay_impl.h" #include "ampl_key_impl.h" #include <vector> #include <iostream> #include <string.h> #include <cstring> #include <chrono> #include <sys/time.h> #include <ctime> namespace gr { namespace pduadd { queue_delay::sptr queue_delay::make(size_t itemsize, int pre_tx) { return gnuradio::get_initial_sptr (new queue_delay_impl(itemsize, pre_tx)); } /* * The private constructor */ queue_delay_impl::queue_delay_impl(size_t itemsize, int pre_tx) : gr::block("queue_delay", gr::io_signature::make(1, 1, itemsize), gr::io_signature::make(1, 1, itemsize)), d_pre_tx(pre_tx), d_itemsize(itemsize) { //runs when flowgraph starts if (pre_tx < 0) { throw std::runtime_error("delay: Cannot initialize block with a Pre Tx < 0."); } set_dly(pre_tx); d_delta = 0; } /* * Our virtual destructor. */ queue_delay_impl::~queue_delay_impl() {} bool queue_delay_impl::start() { d_finished = false; d_thread = gr::thread::thread(std::bind(&queue_delay_impl::run, this)); return block::start(); } bool queue_delay_impl::stop() { // Shut down the thread fdsafdsafdsafdsafdsa d_finished = true; d_thread.interrupt(); d_thread.join(); return block::stop(); } void queue_delay_impl::run() { while (!d_finished) { boost::this_thread::sleep( boost::posix_time::milliseconds(static_cast<long>(1))); if (d_finished) { return; } if(timer > millis){ millis = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); if(timer <= millis && state){ //std::cout << "state change" << std::endl; state = false; } else if(timer <= millis){ d_delta = d_pre_tx; std::cout << "queue ending millis: " << millis << std::endl; } } } } void queue_delay_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required) { // make sure all inputs have noutput_items available unsigned ninputs = ninput_items_required.size(); for (unsigned i = 0; i < ninputs; i++) ninput_items_required[i] = noutput_items; } void queue_delay_impl::set_dly(int d) { // only set a new delta if there is a change in the delay; this // protects from quickly-repeated calls to this function that // would end with d_delta=0. //runs when flowgraph starts if (d != dly()) { gr::thread::scoped_lock l(d_setlock); int old = dly(); set_history(d + 1); //changes dly() from 0 to d (pre_tx) declare_sample_delay(history() - 1); d_delta += dly() - old; } } int queue_delay_impl::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { gr::thread::scoped_lock l(d_setlock); assert(input_items.size() == output_items.size()); const char* iptr; char* optr; int cons, ret; //AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA millis = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); timer = millis + 10; if(start_pre){ start_pre = false; stop_pre = true; } std::cout << "queue work millis: " << millis << std::endl; //AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA // No change in delay; just memcpy ins to outs if (d_delta == 0) {//runs a few times at start to pad //std::cout << "input " << input_items.size() << std::endl; for (size_t i = 0; i < input_items.size(); i++) { iptr = (const char*)input_items[i]; optr = (char*)output_items[i]; std::memcpy(optr, iptr, noutput_items * d_itemsize); auto mi = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); std::cout << "delt0 millis: " << mi << std::endl; } cons = noutput_items; ret = noutput_items; } // Skip over d_delta items on the input else if (d_delta < 0) { //std::cout << "2" << std::endl; int n_to_copy, n_adj; int delta = -d_delta; n_to_copy = std::max(0, noutput_items - delta); n_adj = std::min(delta, noutput_items); for (size_t i = 0; i < input_items.size(); i++) { iptr = (const char*)input_items[i]; optr = (char*)output_items[i]; std::memcpy(optr, iptr + delta * d_itemsize, n_to_copy * d_itemsize); } cons = noutput_items; ret = n_to_copy; delta -= n_adj; d_delta = -delta; } // produce but not consume (inserts zeros) else { // d_delta > 0 //std::cout << "3" << std::endl; int n_from_input, n_padding; n_from_input = std::max(0, noutput_items - d_delta); n_padding = std::min(d_delta, noutput_items); //std::cout << "pad " << n_padding << std::endl; for (size_t i = 0; i < input_items.size(); i++) { iptr = (const char*)input_items[i]; optr = (char*)output_items[i]; std::memset(optr, 0, n_padding * d_itemsize); std::memcpy(optr, iptr, n_from_input * d_itemsize); auto mill = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); std::cout << "delta>0 millis: " << mill << std::endl; //std::cout << "i " << i << std::endl; } cons = n_from_input; ret = noutput_items; d_delta -= n_padding; } consume_each(cons); return ret; } } /* namespace pduadd */ } /* namespace gr */