Hi everyone,

here a tricky TensorIR question ;)

When looking at the TIR below, how can I unroll the block `T_matmul_NT_init` ?

Using `get_block("T_matmul_NT_init")` runs into an FFI error:
the check here: 
https://github.com/apache/tvm/blob/main/src/tir/schedule/primitive/get_block_loop.cc#L31

Can you help us to understand why this is not possible? @junrushao1994  
@Hzfengsy 

When we tried to reach child blocks of parent block "T_matmul_NT_o" it only 
returns the block "T_matmul_NT", hence, we can't reach "T_matmul_NT_init" by 
using that method either.

```
@main = primfn(var_placeholder: handle, var_placeholder_1: handle, var_T_relu: 
handle) -> ()
  attr = {"layout_free_placeholders": [0], "target": Target(kind='rb_npu_lib', 
attrs={'dimension': ""}), "relay_attrs": meta[DictAttrs][0], "tir.noalias": 
True, "global_symbol": "tvmgen_default_rb_npu_lib_main_0"}
  buffers = {placeholder: Buffer(placeholder_2: Pointer(global float32), 
float32, [256, 784], []),
             placeholder_1: Buffer(placeholder_3: Pointer(global float32), 
float32, [1, 784], []),
             T_relu: Buffer(T_relu_1: Pointer(global float32), float32, [1, 
256], [])}
  buffer_map = {var_placeholder: placeholder, var_placeholder_1: placeholder_1, 
var_T_relu: T_relu} {
  block([], "root") {
    tir.reads([])
    tir.writes([])
    T_matmul_NT = alloc_buffer(float32[1, 256])
    for (i0: int32, 0, 1) {
      for (i1_0: int32, 0, 64) {
        block([1, 64, tir.reduce_axis(0, 1)], "T_matmul_NT_o") as [i, j_o, k_o] 
{
          bind(i, 0)
          bind(j_o, i1_0)
          bind(k_o, 0)
          tir.reads([placeholder_1[0, 0:784], placeholder[(j_o*4):((j_o*4) + 
4), 0:784]])
          tir.writes([T_matmul_NT[i, (j_o*4):((j_o*4) + 4)]])
          with init() {
            for (i1_1: int32, 0, 4) {
              block([4], "T_matmul_NT_init") as [j_init] {
                bind(j_init, i1_1)
                tir.reads([])
                tir.writes([T_matmul_NT[i, ((j_o*4) + j_init)]])
                T_matmul_NT[i, ((j_o*4) + j_init)] = 0f32
            }
          }
          for (i2_0: int32, 0, 392) {
            for (i2_1: int32, 0, 2) {
              for (i1_1_1: int32, 0, 4) "unroll" {
                block([4, tir.reduce_axis(0, 784)], "T_matmul_NT") as [j, k] {
                  bind(j, i1_1_1)
                  bind(k, ((i2_0*2) + i2_1))
                  tir.reads([T_matmul_NT[i, ((j_o*4) + j)], placeholder_1[0, 
k], placeholder[((j_o*4) + j), k]])
                  tir.writes([T_matmul_NT[i, ((j_o*4) + j)]])
                  T_matmul_NT[i, ((j_o*4) + j)] = (T_matmul_NT[i, ((j_o*4) + 
j)] + (placeholder_1[0, k]*placeholder[((j_o*4) + j), k]))
              }
            }
          }
        for (i1_1_2: int32, 0, 4) "unroll" {
          block([1, 256], "T_relu") as [ax0, ax1] {
            bind(ax0, 0)
            bind(ax1, ((i1_0*4) + i1_1_2))
            tir.reads([T_matmul_NT[0, ax1]])
            tir.writes([T_relu[ax0, ax1]])
            T_relu[ax0, ax1] = max(T_matmul_NT[0, ax1], 0f32)
        }
      }
    }
}
```

CC: @areusch @aca88 @SebastianBoblestETAS @sezgin1947 @UlrikHjort





---
[Visit 
Topic](https://discuss.tvm.apache.org/t/tensorir-scheduling-the-init-field-of-block/12996/1)
 to respond.

You are receiving this because you enabled mailing list mode.

To unsubscribe from these emails, [click 
here](https://discuss.tvm.apache.org/email/unsubscribe/1d3e6e55cf266caad9299e2f2d57a3ac4fa9413b2edc53cc01b711c708363abe).

Reply via email to