I think in order to ensure the accuracy of the model, rounding is necessary. ``` diff --git a/include/tvm/topi/nn/pooling.h b/include/tvm/topi/nn/pooling.h index c81c7cda7..467d2f5d8 100644 --- a/include/tvm/topi/nn/pooling.h +++ b/include/tvm/topi/nn/pooling.h @@ -386,7 +386,7 @@ inline Tensor adaptive_pool_impl(const Tensor& x, const Array<PrimExpr>& output_ divide_factor *= tvm::cast(x->dtype, reduce_axes[i]->dom->extent); } - return div(pool_sum(indices), divide_factor); + return div(pool_sum(indices) + div(divide_factor, 2), divide_factor); }, "tensor", kElementWise); } else { ```
--- [Visit Topic](https://discuss.tvm.apache.org/t/pytorch-the-inference-results-of-tvm-and-pytorch-are-inconsistent/12048/3) to respond. You are receiving this because you enabled mailing list mode. To unsubscribe from these emails, [click here](https://discuss.tvm.apache.org/email/unsubscribe/fcebcc38d59935420be72541572296eff23346c0e9c3de151d61b7f41c6195c3).