On Monday, 12 December 2022 at 06:02:27 UTC, Ferhat Kurtulmuş wrote:
https://rosettacode.org/wiki/Bitmap/Flood_fill

The https://rosettacode.org/wiki/Bitmap/Flood_fill#D looks like a DFS implementation. The end result is the same, but the order in which the pixels to fill are reached is different. My understanding is that the requested "progressive fill" and "not all at once but building up" means that some sort of animation is needed with multiple frames showing how the area is getting gradually filled.

Here's a better implementation of my BFS code:
```D
import std;

struct point { int x, y; }

void show_grid(char[][] grid) {
  foreach (ref row ; grid)
    writeln(row);
  writeln;
}

void animated_fill(char[][] grid, point[] starting_points) {
  auto height = grid.length;
  if (height == 0)
    return;
  auto width = grid[0].length;

  struct xpoint { int x, y, dist_from_start; }
  auto queue = uninitializedArray!(xpoint[])(width * height);
  size_t start, end;

  foreach (p ; starting_points) {
    if (grid[p.y][p.x] == '.') {
      queue[end++] = xpoint(p.x, p.y, 0);
      grid[p.y][p.x] = '#';
    }
  }

  int current_dist = -1;
  while (start < end) {
      auto p = queue[start++];

      if (p.dist_from_start > current_dist) {
        show_grid(grid);
        current_dist = p.dist_from_start;
      }

      if (p.y + 1 < height && grid[p.y + 1][p.x] == '.') {
queue[end++] = xpoint(p.x, p.y + 1, p.dist_from_start + 1);
        grid[p.y + 1][p.x] = '#';
      }
      if (p.y - 1 >= 0 && grid[p.y - 1][p.x] == '.') {
queue[end++] = xpoint(p.x, p.y - 1, p.dist_from_start + 1);
        grid[p.y - 1][p.x] = '#';
      }
      if (p.x + 1 < width && grid[p.y][p.x + 1] == '.') {
queue[end++] = xpoint(p.x + 1, p.y, p.dist_from_start + 1);
        grid[p.y][p.x + 1] = '#';
      }
      if (p.x - 1 >= 0 && grid[p.y][p.x - 1] == '.') {
queue[end++] = xpoint(p.x - 1, p.y, p.dist_from_start + 1);
        grid[p.y][p.x - 1] = '#';
      }
  }
}

void main() {
  auto grid = ["....@.....".dup,
               "....@@@@..".dup,
               "..........".dup];
  auto height = grid.length.to!int;
  auto width = grid[0].length.to!int;

  const number_of_starting_points = 2;
  auto random_points = new point[](number_of_starting_points);
  foreach (ref p ; random_points)
    p = point(uniform(0, width), uniform(0, height));

  animated_fill(grid, random_points);
}
```

And here's a possible result with a small grid (the "@" cells are acting as "walls"):
```
...#@.....
....@@@@..
.......#..

..##@.....
...#@@@@..
......###.

.###@.....
..##@@@@#.
...#.#####

####@...#.
.###@@@@##
..########

####@..###
####@@@@##
.#########

####@.####
####@@@@##
##########

####@#####
####@@@@##
##########
```

Reply via email to