Hello folks,

I would like to ask Spark devs if and it possible to define explicitly the
key/value types for a map (Spark 3.3.0) as shown below:

import org.apache.spark.sql.functions.{expr, collect_list}
> val df = Seq(
>   (1, Map("k1" -> "v1", "k2" -> "v3")),
>   (1, Map("k3" -> "v3")),
>   (2, Map("k4" -> "v4")),
>   (2, Map("k6" -> "v6", "k5" -> "v5"))
> ).toDF("id", "data")
> val mergeExpr = expr("aggregate(data, map(), (acc, i) -> map_concat(acc, i))")
>
> df.groupBy("id").agg(collect_list("data").as("data"))
>   .select($"id", mergeExpr.as("merged_data"))
>   .show(false)
>
>
The above code throws the next error:

AnalysisException: cannot resolve 'aggregate(`data`, map(),
> lambdafunction(map_concat(namedlambdavariable(), namedlambdavariable()),
> namedlambdavariable(), namedlambdavariable()),
> lambdafunction(namedlambdavariable(), namedlambdavariable()))' due to data
> type mismatch: argument 3 requires map<null,null> type, however,
> 'lambdafunction(map_concat(namedlambdavariable(), namedlambdavariable()),
> namedlambdavariable(), namedlambdavariable())' is of map<string,string>
> type.; Project [id#110, aggregate(data#119, map(),
> lambdafunction(map_concat(cast(lambda acc#122 as map<string,string>),
> lambda i#123), lambda acc#122, lambda i#123, false), lambdafunction(lambda
> id#124, lambda id#124, false)) AS aggregate(data, map(),
> lambdafunction(map_concat(namedlambdavariable(), namedlambdavariable()),
> namedlambdavariable(), namedlambdavariable()),
> lambdafunction(namedlambdavariable(), namedlambdavariable()))#125] +-
> Aggregate [id#110], [id#110, collect_list(data#111, 0, 0) AS data#119] +-
> Project [_1#105 AS id#110, _2#106 AS data#111] +- LocalRelation [_1#105,
> _2#106]


It seems that map() is initialised as map<null,null> when map<string,string>
is expected. I believe that the behaviour has changed since 2.4.5 where map
was initialised as map<string, string>, and the previous example was
working.

Is it possible to create a map by specifying the key-value type explicitly?

So far, I came up with a workaround using map('', '') to initialise the map
for string key-value and using map_filter() to exclude/remove the redundant
map('', '') key-value item:

> val mergeExpr = expr("map_filter(aggregate(data, map('', ''), (acc, i) ->
> map_concat(acc, i)), (k, v) -> k != '')")


Thank you for your help

Greetings,
Alex

Reply via email to