Super.  Thanks Deepak!

On Mon, Dec 9, 2019 at 6:58 PM Deepak Vohra <dvohr...@yahoo.com> wrote:

> Please install Apache Spark on Windows as discussed in Apache Spark on
> Windows - DZone Open Source
> <https://dzone.com/articles/working-on-apache-spark-on-windows>
>
> Apache Spark on Windows - DZone Open Source
>
> This article explains and provides solutions for some of the most common
> errors developers come across when inst...
> <https://dzone.com/articles/working-on-apache-spark-on-windows>
>
>
>
> On Monday, December 9, 2019, 11:27:53 p.m. UTC, Ping Liu <
> pingpinga...@gmail.com> wrote:
>
>
> Thanks Deepak!  Yes, I want to try it with Docker.  But my AWS account ran
> out of free period.  Is there a shared EC2 for Spark that we can use for
> free?
>
> Ping
>
>
> On Monday, December 9, 2019, Deepak Vohra <dvohr...@yahoo.com> wrote:
> > Haven't tested but the general procedure is to exclude all guava
> dependencies that are not needed. The hadoop-common depedency does not have
> a dependency on guava according to Maven Repository: org.apache.hadoop »
> hadoop-common
> >
> > Maven Repository: org.apache.hadoop » hadoop-common
> >
> > Apache Spark 2.4 has dependency on guava 14.
> > If a Docker image for Cloudera Hadoop is used Spark is may be installed
> on Docker for Windows.
> > For Docker on Windows on EC2 refer Getting Started with Docker for
> Windows - Developer.com
> >
> > Getting Started with Docker for Windows - Developer.com
> >
> > Docker for Windows makes it feasible to run a Docker daemon on Windows
> Server 2016. Learn to harness its power.
> >
> >
> > Conflicting versions is not an issue if Docker is used.
> > "Apache Spark applications usually have a complex set of required
> software dependencies. Spark applications may require specific versions of
> these dependencies (such as Pyspark and R) on the Spark executor hosts,
> sometimes with conflicting versions."
> > Running Spark in Docker Containers on YARN
> >
> > Running Spark in Docker Containers on YARN
> >
> >
> >
> >
> >
> > On Monday, December 9, 2019, 08:37:47 p.m. UTC, Ping Liu <
> pingpinga...@gmail.com> wrote:
> >
> > Hi Deepak,
> > I tried it.  Unfortunately, it still doesn't work.  28.1-jre isn't
> downloaded for somehow.  I'll try something else.  Thank you very much for
> your help!
> > Ping
> >
> > On Fri, Dec 6, 2019 at 5:28 PM Deepak Vohra <dvohr...@yahoo.com> wrote:
> >
> >  As multiple guava versions are found exclude guava from all the
> dependecies it could have been downloaded with. And explicitly add a recent
> guava version.
> > <dependency>
> >         <groupId>org.apache.hadoop</groupId>
> >         <artifactId>hadoop-common</artifactId>
> >          <version>3.2.1</version>
> >         <exclusions>
> >           <exclusion>
> >              <groupId>com.google.guava</groupId>
> >              <artifactId>guava</artifactId>
> >            </exclusion>
> >         </exclusions>
> >        </dependency>
> > <dependency>
> >     <groupId>com.google.guava</groupId>
> >     <artifactId>guava</artifactId>
> >     <version>28.1-jre</version>
> > </dependency>
> >      </dependencies>
> >   </dependencyManagement>
> >
> > On Friday, December 6, 2019, 10:12:55 p.m. UTC, Ping Liu <
> pingpinga...@gmail.com> wrote:
> >
> > Hi Deepak,
> > Following your suggestion, I put exclusion of guava in topmost POM
> (under Spark home directly) as follows.
> > 2227-      </dependency>
> > 2228-      <dependency>
> > 2229-        <groupId>org.apache.hadoop</groupId>
> > 2230:        <artifactId>hadoop-common</artifactId>
> > 2231-        <version>3.2.1</version>
> > 2232-        <exclusions>
> > 2233-          <exclusion>
> > 2234-            <groupId>com.google.guava</groupId>
> > 2235-            <artifactId>guava</artifactId>
> > 2236-          </exclusion>
> > 2237-        </exclusions>
> > 2238-      </dependency>
> > 2239-    </dependencies>
> > 2240-  </dependencyManagement>
> > I also set properties for spark.executor.userClassPathFirst=true and
> spark.driver.userClassPathFirst=true
> > D:\apache\spark>mvn -Pyarn -Phadoop-3.2 -Dhadoop-version=3.2.1
> -Dspark.executor.userClassPathFirst=true
> -Dspark.driver.userClassPathFirst=true -DskipTests clean package
> > and rebuilt spark.
> > But I got the same error when running spark-shell.
> >
> > [INFO] Reactor Summary for Spark Project Parent POM 3.0.0-SNAPSHOT:
> > [INFO]
> > [INFO] Spark Project Parent POM ........................... SUCCESS [
> 25.092 s]
> > [INFO] Spark Project Tags ................................. SUCCESS [
> 22.093 s]
> > [INFO] Spark Project Sketch ............................... SUCCESS [
> 19.546 s]
> > [INFO] Spark Project Local DB ............................. SUCCESS [
> 10.468 s]
> > [INFO] Spark Project Networking ........................... SUCCESS [
> 17.733 s]
> > [INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [
>  6.531 s]
> > [INFO] Spark Project Unsafe ............................... SUCCESS [
> 25.327 s]
> > [INFO] Spark Project Launcher ............................. SUCCESS [
> 27.264 s]
> > [INFO] Spark Project Core ................................. SUCCESS
> [07:59 min]
> > [INFO] Spark Project ML Local Library ..................... SUCCESS
> [01:39 min]
> > [INFO] Spark Project GraphX ............................... SUCCESS
> [02:08 min]
> > [INFO] Spark Project Streaming ............................ SUCCESS
> [02:56 min]
> > [INFO] Spark Project Catalyst ............................. SUCCESS
> [08:55 min]
> > [INFO] Spark Project SQL .................................. SUCCESS
> [12:33 min]
> > [INFO] Spark Project ML Library ........................... SUCCESS
> [08:49 min]
> > [INFO] Spark Project Tools ................................ SUCCESS [
> 16.967 s]
> > [INFO] Spark Project Hive ................................. SUCCESS
> [06:15 min]
> > [INFO] Spark Project Graph API ............................ SUCCESS [
> 10.219 s]
> > [INFO] Spark Project Cypher ............................... SUCCESS [
> 11.952 s]
> > [INFO] Spark Project Graph ................................ SUCCESS [
> 11.171 s]
> > [INFO] Spark Project REPL ................................. SUCCESS [
> 55.029 s]
> > [INFO] Spark Project YARN Shuffle Service ................. SUCCESS
> [01:07 min]
> > [INFO] Spark Project YARN ................................. SUCCESS
> [02:22 min]
> > [INFO] Spark Project Assembly ............................. SUCCESS [
> 21.483 s]
> > [INFO] Kafka 0.10+ Token Provider for Streaming ........... SUCCESS [
> 56.450 s]
> > [INFO] Spark Integration for Kafka 0.10 ................... SUCCESS
> [01:21 min]
> > [INFO] Kafka 0.10+ Source for Structured Streaming ........ SUCCESS
> [02:33 min]
> > [INFO] Spark Project Examples ............................. SUCCESS
> [02:05 min]
> > [INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [
> 30.780 s]
> > [INFO] Spark Avro ......................................... SUCCESS
> [01:43 min]
> > [INFO]
> ------------------------------------------------------------------------
> > [INFO] BUILD SUCCESS
> > [INFO]
> ------------------------------------------------------------------------
> > [INFO] Total time:  01:08 h
> > [INFO] Finished at: 2019-12-06T11:43:08-08:00
> > [INFO]
> ------------------------------------------------------------------------
> >
> > D:\apache\spark>spark-shell
> > 'spark-shell' is not recognized as an internal or external command,
> > operable program or batch file.
> >
> > D:\apache\spark>cd bin
> >
> > D:\apache\spark\bin>spark-shell
> > Exception in thread "main" java.lang.NoSuchMethodError:
> com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V
> >         at
> org.apache.hadoop.conf.Configuration.set(Configuration.java:1357)
> >         at
> org.apache.hadoop.conf.Configuration.set(Configuration.java:1338)
> >         at
> org.apache.spark.deploy.SparkHadoopUtil$.org$apache$spark$deploy$SparkHadoopUtil$$appendS3AndSparkHadoopHiveConfigurations(SparkHadoopUtil.scala:456)
> >         at
> org.apache.spark.deploy.SparkHadoopUtil$.newConfiguration(SparkHadoopUtil.scala:427)
> >         at
> org.apache.spark.deploy.SparkSubmit.$anonfun$prepareSubmitEnvironment$2(SparkSubmit.scala:342)
> >         at
> org.apache.spark.deploy.SparkSubmit$$Lambda$132/1985836631.apply(Unknown
> Source)
> >         at scala.Option.getOrElse(Option.scala:189)
> >         at
> org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:342)
> >         at org.apache.spark.deploy.SparkSubmit.org
> $apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:871)
> >         at
> org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:180)
> >         at
> org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203)
> >         at
> org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)
> >         at
> org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1007)
> >         at
> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016)
> >         at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
> > Before building spark, I went to my local Maven repo and removed guava
> at all.  But after building, I found the same versions of guava have been
> downloaded.
> > D:\mavenrepo\com\google\guava\guava>ls
> > 14.0.1  16.0.1  18.0  19.0
> > On Thu, Dec 5, 2019 at 5:12 PM Deepak Vohra <dvohr...@yahoo.com> wrote:
> >
> > Just to clarify, excluding Hadoop provided guava in pom.xml is an
> alternative to using an Uber jar, which is a more involved process.
> >
> > On Thursday, December 5, 2019, 10:37:39 p.m. UTC, Ping Liu <
> pingpinga...@gmail.com> wrote:
> >
> > Hi Sean,
> > Thanks for your response!
> > Sorry, I didn't mention that "build/mvn ..." doesn't work.  So I did go
> to Spark home directory and ran mvn from there.  Following is my build and
> running result.  The source code was just updated yesterday.  I guess the
> POM should specify newer Guava library somehow.
> >
> > Thanks Sean.
> > Ping
> > [INFO] Reactor Summary for Spark Project Parent POM 3.0.0-SNAPSHOT:
> > [INFO]
> > [INFO] Spark Project Parent POM ........................... SUCCESS [
> 14.794 s]
> > [INFO] Spark Project Tags ................................. SUCCESS [
> 18.233 s]
> > [INFO] Spark Project Sketch ............................... SUCCESS [
> 20.077 s]
> > [INFO] Spark Project Local DB ............................. SUCCESS [
>  7.846 s]
> > [INFO] Spark Project Networking ........................... SUCCESS [
> 14.906 s]
> > [INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [
>  6.267 s]
> > [INFO] Spark Project Unsafe ............................... SUCCESS [
> 31.710 s]
> > [INFO] Spark Project Launcher ............................. SUCCESS [
> 10.227 s]
> > [INFO] Spark Project Core ................................. SUCCESS
> [08:03 min]
> > [INFO] Spark Project ML Local Library ..................... SUCCESS
> [01:51 min]
> > [INFO] Spark Project GraphX ............................... SUCCESS
> [02:20 min]
> > [INFO] Spark Project Streaming ............................ SUCCESS
> [03:16 min]
> > [INFO] Spark Project Catalyst ............................. SUCCESS
> [08:45 min]
> > [INFO] Spark Project SQL .................................. SUCCESS
> [12:12 min]
> > [INFO] Spark Project ML Library ........................... SUCCESS [
>  16:28 h]
> > [INFO] Spark Project Tools ................................ SUCCESS [
> 23.602 s]
> > [INFO] Spark Project Hive ................................. SUCCESS
> [07:50 min]
> > [INFO] Spark Project Graph API ............................ SUCCESS [
>  8.734 s]
> > [INFO] Spark Project Cypher ............................... SUCCESS [
> 12.420 s]
> > [INFO] Spark Project Graph ................................ SUCCESS [
> 10.186 s]
> > [INFO] Spark Project REPL ................................. SUCCESS
> [01:03 min]
> > [INFO] Spark Project YARN Shuffle Service ................. SUCCESS
> [01:19 min]
> > [INFO] Spark Project YARN ................................. SUCCESS
> [02:19 min]
> > [INFO] Spark Project Assembly ............................. SUCCESS [
> 18.912 s]
> > [INFO] Kafka 0.10+ Token Provider for Streaming ........... SUCCESS [
> 57.925 s]
> > [INFO] Spark Integration for Kafka 0.10 ................... SUCCESS
> [01:20 min]
> > [INFO] Kafka 0.10+ Source for Structured Streaming ........ SUCCESS
> [02:26 min]
> > [INFO] Spark Project Examples ............................. SUCCESS
> [02:00 min]
> > [INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [
> 28.354 s]
> > [INFO] Spark Avro ......................................... SUCCESS
> [01:44 min]
> > [INFO]
> ------------------------------------------------------------------------
> > [INFO] BUILD SUCCESS
> > [INFO]
> ------------------------------------------------------------------------
> > [INFO] Total time:  17:30 h
> > [INFO] Finished at: 2019-12-05T12:20:01-08:00
> > [INFO]
> ------------------------------------------------------------------------
> >
> > D:\apache\spark>cd bin
> >
> > D:\apache\spark\bin>ls
> > beeline               load-spark-env.cmd  run-example       spark-shell
>       spark-sql2.cmd     sparkR.cmd
> > beeline.cmd           load-spark-env.sh   run-example.cmd
> spark-shell.cmd   spark-submit       sparkR2.cmd
> > docker-image-tool.sh  pyspark             spark-class
> spark-shell2.cmd  spark-submit.cmd
> > find-spark-home       pyspark.cmd         spark-class.cmd   spark-sql
>       spark-submit2.cmd
> > find-spark-home.cmd   pyspark2.cmd        spark-class2.cmd
>  spark-sql.cmd     sparkR
> >
> > D:\apache\spark\bin>spark-shell
> > Exception in thread "main" java.lang.NoSuchMethodError:
> com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V
> >         at
> org.apache.hadoop.conf.Configuration.set(Configuration.java:1357)
> >         at
> org.apache.hadoop.conf.Configuration.set(Configuration.java:1338)
> >         at
> org.apache.spark.deploy.SparkHadoopUtil$.org$apache$spark$deploy$SparkHadoopUtil$$appendS3AndSparkHadoopHiveConfigurations(SparkHadoopUtil.scala:456)
> >         at
> org.apache.spark.deploy.SparkHadoopUtil$.newConfiguration(SparkHadoopUtil.scala:427)
> >         at
> org.apache.spark.deploy.SparkSubmit.$anonfun$prepareSubmitEnvironment$2(SparkSubmit.scala:342)
> >         at
> org.apache.spark.deploy.SparkSubmit$$Lambda$132/817978763.apply(Unknown
> Source)
> >         at scala.Option.getOrElse(Option.scala:189)
> >         at
> org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:342)
> >         at org.apache.spark.deploy.SparkSubmit.org
> $apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:871)
> >         at
> org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:180)
> >         at
> org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203)
> >         at
> org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)
> >         at
> org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1007)
> >         at
> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016)
> >         at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
> >
> > D:\apache\spark\bin>
> > On Thu, Dec 5, 2019 at 1:33 PM Sean Owen <sro...@gmail.com> wrote:
> >
> > What was the build error? you didn't say. Are you sure it succeeded?
> > Try running from the Spark home dir, not bin.
> > I know we do run Windows tests and it appears to pass tests, etc.
> >
> > On Thu, Dec 5, 2019 at 3:28 PM Ping Liu <pingpinga...@gmail.com> wrote:
> >>
> >> Hello,
> >>
> >> I understand Spark is preferably built on Linux.  But I have a Windows
> machine with a slow Virtual Box for Linux.  So I wish I am able to build
> and run Spark code on Windows environment.
> >>
> >> Unfortunately,
> >>
> >> # Apache Hadoop 2.6.X
> >> ./build/mvn -Pyarn -DskipTests clean package
> >>
> >> # Apache Hadoop 2.7.X and later
> >> ./build/mvn -Pyarn -Phadoop-2.7 -Dhadoop.version=2.7.3 -DskipTests
> clean package
> >>
> >>
> >> Both are listed on
> http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version-and-enabling-yarn
> >>
> >> But neither works for me (I stay directly under spark root directory
> and run "mvn -Pyarn -Phadoop-2.7 -Dhadoop.version=2.7.3 -DskipTests clean
> package"
> >>
> >> and
> >>
> >> Then I tried "mvn -Pyarn -Phadoop-3.2 -Dhadoop.version=3.2.1
> -DskipTests clean package"
> >>
> >> Now build works.  But when I run spark-shell.  I got the following
> error.
> >>
> >> D:\apache\spark\bin>spark-shell
> >> Exception in thread "main" java.lang.NoSuchMethodError:
> com.google.common.base.Preconditions.checkArgument(ZLjava/lang/String;Ljava/lang/Object;)V
> >>         at
> org.apache.hadoop.conf.Configuration.set(Configuration.java:1357)
> >>         at
> org.apache.hadoop.conf.Configuration.set(Configuration.java:1338)
> >>         at
> org.apache.spark.deploy.SparkHadoopUtil$.org$apache$spark$deploy$SparkHadoopUtil$$appendS3AndSparkHadoopHiveConfigurations(SparkHadoopUtil.scala:456)
> >>         at
> org.apache.spark.deploy.SparkHadoopUtil$.newConfiguration(SparkHadoopUtil.scala:427)
> >>         at
> org.apache.spark.deploy.SparkSubmit.$anonfun$prepareSubmitEnvironment$2(SparkSubmit.scala:342)
> >>         at
> org.apache.spark.deploy.SparkSubmit$$Lambda$132/817978763.apply(Unknown
> Source)
> >>         at scala.Option.getOrElse(Option.scala:189)
> >>         at
> org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:342)
> >>         at org.apache.spark.deploy.SparkSubmit.org
> $apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:871)
> >>         at
> org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:180)
> >>         at
> org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203)
> >>         at
> org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)
> >>         at
> org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1007)
> >>         at
> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1016)
> >>         at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
> >>
> >>
> >> Has anyone experienced building and running Spark source code
> successfully on Windows?  Could you please share your experience?
> >>
> >> Thanks a lot!
> >>
> >> Ping
> >>
> >
>

Reply via email to