You are seeing a bug in the Hive parser. Hive drops the window clause when it encounters a count(distinct ...). See https://issues.apache.org/jira/browse/HIVE-10141 for more information.
Spark 1.6 plans this as a regular distinct aggregate (dropping the window clause), which is wrong. Spark 2.x uses its own parser, and it does not allow you to do use 'distinct' aggregates in window functions. You are getting this error because aggregates are planned before a windows, and the aggregate cannot find b in its grouping by expressions. On Wed, Mar 8, 2017 at 5:21 AM, StanZhai <m...@stanzhai.site> wrote: > We can reproduce this using the following code: > > val spark = > SparkSession.builder().appName("test").master("local").getOrCreate() > > val sql1 = > """ > |create temporary view tb as select * from values > |(1, 0), > |(1, 0), > |(2, 0) > |as grouping(a, b) > """.stripMargin > > val sql = > """ > |select count(distinct(b)) over (partition by a) from tb group by a > """.stripMargin > > spark.sql(sql1) > spark.sql(sql).show() > > It will throw exception like this: > > Exception in thread "main" org.apache.spark.sql.AnalysisException: expression > 'tb.`b`' is neither present in the group by, nor is it an aggregate function. > Add to group by or wrap in first() (or first_value) if you don't care which > value you get.;; > Project [count(DISTINCT b) OVER (PARTITION BY a ROWS BETWEEN UNBOUNDED > PRECEDING AND UNBOUNDED FOLLOWING)#4L] > +- Project [b#1, a#0, count(DISTINCT b) OVER (PARTITION BY a ROWS BETWEEN > UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)#4L, count(DISTINCT b) OVER > (PARTITION BY a ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)#4L] > +- Window [count(distinct b#1) windowspecdefinition(a#0, ROWS BETWEEN > UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS count(DISTINCT b) OVER > (PARTITION BY a ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED > FOLLOWING)#4L], [a#0] > +- Aggregate [a#0], [b#1, a#0] > +- SubqueryAlias tb > +- Project [a#0, b#1] > +- SubqueryAlias grouping > +- LocalRelation [a#0, b#1] > > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:58) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.org$apache$spark$sql$catalyst$analysis$CheckAnalysis$class$$anonfun$$checkValidAggregateExpression$1(CheckAnalysis.scala:220) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$7.apply(CheckAnalysis.scala:247) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$7.apply(CheckAnalysis.scala:247) > at scala.collection.immutable.List.foreach(List.scala:381) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:247) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) > at scala.collection.immutable.List.foreach(List.scala:381) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:125) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) > at scala.collection.immutable.List.foreach(List.scala:381) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:125) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:125) > at scala.collection.immutable.List.foreach(List.scala:381) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:125) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64) > at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:582) > > But, there is no exception in Spark 1.6.x. > > I think the sql select count(distinct(b)) over (partition by a) from tb > group by a should be executed. I've no idea about the exception. Is this > in line with expectations? > > Any help is appreciated! > > Best, > > Stan > > > ------------------------------ > View this message in context: [SQL]Analysis failed when combining Window > function and GROUP BY in Spark2.x > <http://apache-spark-developers-list.1001551.n3.nabble.com/SQL-Analysis-failed-when-combining-Window-function-and-GROUP-BY-in-Spark2-x-tp21131.html> > Sent from the Apache Spark Developers List mailing list archive > <http://apache-spark-developers-list.1001551.n3.nabble.com/> at > Nabble.com. > -- Herman van Hövell Software Engineer Databricks Inc. hvanhov...@databricks.com +31 6 420 590 27 databricks.com [image: http://databricks.com] <http://databricks.com/>