> Is this problem of idle executors sticking around solved in Dynamic
Resource Allocation?  Is there some timeout after which Idle executors can
just shutdown and cleanup its resources.

Yes, that's exactly what dynamic allocation does.  But again I have no idea
what the state of dynamic allocation + mesos is.

On Mon, Dec 19, 2016 at 1:32 PM, Chawla,Sumit <sumitkcha...@gmail.com>
wrote:

> Great.  Makes much better sense now.  What will be reason to have
> spark.mesos.mesosExecutor.cores more than 1, as this number doesn't
> include the number of cores for tasks.
>
> So in my case it seems like 30 CPUs are allocated to executors.  And there
> are 48 tasks so 48 + 30 =  78 CPUs.  And i am noticing this gap of 30 is
> maintained till the last task exits.  This explains the gap.   Thanks
> everyone.  I am still not sure how this number 30 is calculated.  ( Is it
> dynamic based on current resources, or is it some configuration.  I have 32
> nodes in my cluster).
>
> Is this problem of idle executors sticking around solved in Dynamic
> Resource Allocation?  Is there some timeout after which Idle executors can
> just shutdown and cleanup its resources.
>
>
> Regards
> Sumit Chawla
>
>
> On Mon, Dec 19, 2016 at 12:45 PM, Michael Gummelt <mgumm...@mesosphere.io>
> wrote:
>
>> >  I should preassume that No of executors should be less than number of
>> tasks.
>>
>> No.  Each executor runs 0 or more tasks.
>>
>> Each executor consumes 1 CPU, and each task running on that executor
>> consumes another CPU.  You can customize this via
>> spark.mesos.mesosExecutor.cores (https://github.com/apache/spa
>> rk/blob/v1.6.3/docs/running-on-mesos.md) and spark.task.cpus (
>> https://github.com/apache/spark/blob/v1.6.3/docs/configuration.md)
>>
>> On Mon, Dec 19, 2016 at 12:09 PM, Chawla,Sumit <sumitkcha...@gmail.com>
>> wrote:
>>
>>> Ah thanks. looks like i skipped reading this *"Neither will executors
>>> terminate when they’re idle."*
>>>
>>> So in my job scenario,  I should preassume that No of executors should
>>> be less than number of tasks. Ideally one executor should execute 1 or more
>>> tasks.  But i am observing something strange instead.  I start my job with
>>> 48 partitions for a spark job. In mesos ui i see that number of tasks is
>>> 48, but no. of CPUs is 78 which is way more than 48.  Here i am assuming
>>> that 1 CPU is 1 executor.   I am not specifying any configuration to set
>>> number of cores per executor.
>>>
>>> Regards
>>> Sumit Chawla
>>>
>>>
>>> On Mon, Dec 19, 2016 at 11:35 AM, Joris Van Remoortere <
>>> jo...@mesosphere.io> wrote:
>>>
>>>> That makes sense. From the documentation it looks like the executors
>>>> are not supposed to terminate:
>>>> http://spark.apache.org/docs/latest/running-on-mesos.html#fi
>>>> ne-grained-deprecated
>>>>
>>>>> Note that while Spark tasks in fine-grained will relinquish cores as
>>>>> they terminate, they will not relinquish memory, as the JVM does not give
>>>>> memory back to the Operating System. Neither will executors terminate when
>>>>> they’re idle.
>>>>
>>>>
>>>> I suppose your task to executor CPU ratio is low enough that it looks
>>>> like most of the resources are not being reclaimed. If your tasks were
>>>> using significantly more CPU the amortized cost of the idle executors would
>>>> not be such a big deal.
>>>>
>>>>
>>>> —
>>>> *Joris Van Remoortere*
>>>> Mesosphere
>>>>
>>>> On Mon, Dec 19, 2016 at 11:26 AM, Timothy Chen <tnac...@gmail.com>
>>>> wrote:
>>>>
>>>>> Hi Chawla,
>>>>>
>>>>> One possible reason is that Mesos fine grain mode also takes up cores
>>>>> to run the executor per host, so if you have 20 agents running Fine
>>>>> grained executor it will take up 20 cores while it's still running.
>>>>>
>>>>> Tim
>>>>>
>>>>> On Fri, Dec 16, 2016 at 8:41 AM, Chawla,Sumit <sumitkcha...@gmail.com>
>>>>> wrote:
>>>>> > Hi
>>>>> >
>>>>> > I am using Spark 1.6. I have one query about Fine Grained model in
>>>>> Spark.
>>>>> > I have a simple Spark application which transforms A -> B.  Its a
>>>>> single
>>>>> > stage application.  To begin the program, It starts with 48
>>>>> partitions.
>>>>> > When the program starts running, in mesos UI it shows 48 tasks and
>>>>> 48 CPUs
>>>>> > allocated to job.  Now as the tasks get done, the number of active
>>>>> tasks
>>>>> > number starts decreasing.  How ever, the number of CPUs does not
>>>>> decrease
>>>>> > propotionally.  When the job was about to finish, there was a single
>>>>> > remaininig task, however CPU count was still 20.
>>>>> >
>>>>> > My questions, is why there is no one to one mapping between tasks
>>>>> and cpus
>>>>> > in Fine grained?  How can these CPUs be released when the job is
>>>>> done, so
>>>>> > that other jobs can start.
>>>>> >
>>>>> >
>>>>> > Regards
>>>>> > Sumit Chawla
>>>>>
>>>>
>>>>
>>>
>>
>>
>> --
>> Michael Gummelt
>> Software Engineer
>> Mesosphere
>>
>
>


-- 
Michael Gummelt
Software Engineer
Mesosphere

Reply via email to