I am trying to create UDFs with improved performance. So I decided to compare several ways of doing it. In general I created a dataframe using range with 50M elements, cached it and counted it to manifest it.
I then implemented a simple predicate (x<10) in 4 different ways, counted the elements and timed it. The 4 ways were: - Standard expression (took 90 millisonds) - Udf (took 539 miliseconds) - Codegen (took 358 miliseconds) - Dataset filter (took 1022 miliseconds) I understand why filter is so much slower. I also understand why UDF is slower (with volcano model taking up processing time). I do not understand why the codegen I created is so slow. What am I missing? The code to generate the numbers is followed: import org.apache.spark.sql.codegenFuncs._ val df = spark.range(50000000).withColumnRenamed("id","smaller") df.cache().count() val base_filter_df = df.filter(df("smaller") < 10) import org.apache.spark.sql.functions.udf def asUdf=udf((x: Int) => x < 10) val udf_filter_df = df.filter(asUdf(df("smaller"))) val my_func = df.filter(genf_func(df("smaller"))) case class tmpclass(smaller: BigInt) val simpleFilter = df.as[tmpclass].filter((x: tmpclass) => (x.smaller < 10)) def time[R](block: => R) = { val t0 = System.nanoTime() val result = block // call-by-name val t1 = System.nanoTime() (t1 - t0)/1000000 } def avgTime[R](block: => R) = { val times = for (i <- 1 to 5) yield time(block) times.sum / 5 } println("base " + avgTime(base_filter_df.count())) //>> got a result of 90 println("udf " + avgTime(udf_filter_df.count())) //>> got a result of 539 println("codegen " + avgTime(my_func.count())) //>> got a result of 358 println("filter " + avgTime(simpleFilter.count())) //>> got a result of 1022 And the code for the genf_func: package org.apache.spark.sql import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, ExprCode} import org.apache.spark.sql.types._ import org.apache.spark.sql.catalyst.expressions._ object codegenFuncs { case class genf(child: Expression) extends UnaryExpression with Predicate with ImplicitCastInputTypes { override def inputTypes: Seq[AbstractDataType] = Seq(IntegerType) override def toString: String = s"$child < 10" override def eval(input: InternalRow): Any = { val value = child.eval(input) if (value == null) { false } else { child.dataType match { case IntegerType => value.asInstanceOf[Int] < 10 } } } override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = { defineCodeGen(ctx, ev, c => s"($c) < 10") } } private def withExpr(expr: Expression): Column = Column(expr) def genf_func(v: Column): Column = withExpr { genf(v.expr) } } -- View this message in context: http://apache-spark-developers-list.1001551.n3.nabble.com/UDF-and-native-functions-performance-tp18920.html Sent from the Apache Spark Developers List mailing list archive at Nabble.com.