FYI, I've updated the issue's description to include a very simple program which reproduces the issue for me.
Cheers, Michael > On Aug 23, 2016, at 4:54 PM, Michael Allman <mich...@videoamp.com> wrote: > > I've replied on the issue's page, but in a word, "yes". See > https://issues.apache.org/jira/browse/SPARK-17204 > <https://issues.apache.org/jira/browse/SPARK-17204>. > > Michael > > >> On Aug 23, 2016, at 11:55 AM, Reynold Xin <r...@databricks.com >> <mailto:r...@databricks.com>> wrote: >> >> Does this problem still exist on today's master/branch-2.0? >> >> SPARK-16550 was merged. It might be fixed already. >> >> On Tue, Aug 23, 2016 at 9:37 AM, Michael Allman <mich...@videoamp.com >> <mailto:mich...@videoamp.com>> wrote: >> FYI, I posted this to user@ and have followed up with a bug report: >> https://issues.apache.org/jira/browse/SPARK-17204 >> <https://issues.apache.org/jira/browse/SPARK-17204> >> >> Michael >> >>> Begin forwarded message: >>> >>> From: Michael Allman <mich...@videoamp.com <mailto:mich...@videoamp.com>> >>> Subject: Anyone else having trouble with replicated off heap RDD >>> persistence? >>> Date: August 16, 2016 at 3:45:14 PM PDT >>> To: user <u...@spark.apache.org <mailto:u...@spark.apache.org>> >>> >>> Hello, >>> >>> A coworker was having a problem with a big Spark job failing after several >>> hours when one of the executors would segfault. That problem aside, I >>> speculated that her job would be more robust against these kinds of >>> executor crashes if she used replicated RDD storage. She's using off heap >>> storage (for good reason), so I asked her to try running her job with the >>> following storage level: `StorageLevel(useDisk = true, useMemory = true, >>> useOffHeap = true, deserialized = false, replication = 2)`. The job would >>> immediately fail with a rather suspicious looking exception. For example: >>> >>> com.esotericsoftware.kryo.KryoException: Encountered unregistered class ID: >>> 9086 >>> at >>> com.esotericsoftware.kryo.util.DefaultClassResolver.readClass(DefaultClassResolver.java:137) >>> at com.esotericsoftware.kryo.Kryo.readClass(Kryo.java:670) >>> at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:781) >>> at >>> org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:229) >>> at >>> org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:169) >>> at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) >>> at >>> org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32) >>> at >>> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) >>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:461) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown >>> Source) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(Unknown >>> Source) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown >>> Source) >>> at >>> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) >>> at >>> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) >>> at >>> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) >>> at org.apache.spark.scheduler.Task.run(Task.scala:85) >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> at java.lang.Thread.run(Thread.java:745) >>> >>> or >>> >>> java.lang.IndexOutOfBoundsException: Index: 6, Size: 0 >>> at java.util.ArrayList.rangeCheck(ArrayList.java:653) >>> at java.util.ArrayList.get(ArrayList.java:429) >>> at >>> com.esotericsoftware.kryo.util.MapReferenceResolver.getReadObject(MapReferenceResolver.java:60) >>> at com.esotericsoftware.kryo.Kryo.readReferenceOrNull(Kryo.java:834) >>> at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:788) >>> at >>> org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:229) >>> at >>> org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:169) >>> at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73) >>> at >>> org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32) >>> at >>> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) >>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:461) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown >>> Source) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(Unknown >>> Source) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown >>> Source) >>> at >>> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) >>> at >>> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) >>> at >>> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) >>> at org.apache.spark.scheduler.Task.run(Task.scala:85) >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> at java.lang.Thread.run(Thread.java:745) >>> >>> or >>> >>> java.lang.NullPointerException >>> at >>> org.apache.spark.sql.execution.columnar.InMemoryTableScanExec$$anonfun$doExecute$1$$anonfun$6.apply(InMemoryTableScanExec.scala:141) >>> at >>> org.apache.spark.sql.execution.columnar.InMemoryTableScanExec$$anonfun$doExecute$1$$anonfun$6.apply(InMemoryTableScanExec.scala:140) >>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:463) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown >>> Source) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown >>> Source) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(Unknown >>> Source) >>> at >>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown >>> Source) >>> at >>> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) >>> at >>> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) >>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) >>> at >>> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) >>> at org.apache.spark.scheduler.Task.run(Task.scala:85) >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> at java.lang.Thread.run(Thread.java:745) >>> >>> I tried switching to Java serialization. I got a different exception: >>> >>> java.io <http://java.io/>.StreamCorruptedException: invalid stream header: >>> 780000D0 >>> at >>> java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java:808) >>> at java.io.ObjectInputStream.<init>(ObjectInputStream.java:301) >>> at >>> org.apache.spark.serializer.JavaDeserializationStream$$anon$1.<init>(JavaSerializer.scala:63) >>> at >>> org.apache.spark.serializer.JavaDeserializationStream.<init>(JavaSerializer.scala:63) >>> at >>> org.apache.spark.serializer.JavaSerializerInstance.deserializeStream(JavaSerializer.scala:122) >>> at >>> org.apache.spark.serializer.SerializerManager.dataDeserializeStream(SerializerManager.scala:146) >>> at >>> org.apache.spark.storage.BlockManager.getLocalValues(BlockManager.scala:433) >>> at >>> org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:672) >>> at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330) >>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:281) >>> at >>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) >>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) >>> at >>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) >>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) >>> at >>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) >>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) >>> at org.apache.spark.scheduler.Task.run(Task.scala:85) >>> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) >>> at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> at java.lang.Thread.run(Thread.java:745) >>> >>> All of this suggests some kind of memory corruption. Has anyone else had a >>> problem like this using off heap storage with replication factor 2? >>> >>> Thanks, >>> >>> Michael >> >> >