We were able to reproduce it with a minimal example. I've opened a jira
issue:

https://issues.apache.org/jira/browse/SPARK-15825

On Wed, Jun 8, 2016 at 12:43 PM, Koert Kuipers <ko...@tresata.com> wrote:

> great!
>
> we weren't able to reproduce it because the unit tests use a
> broadcast-join while on the cluster it uses sort-merge-join. so the issue
> is in sort-merge-join.
>
> we are now able to reproduce it in tests using
> spark.sql.autoBroadcastJoinThreshold=-1
> it produces weird looking garbled results in the join.
> hoping to get a minimal reproducible example soon.
>
> On Wed, Jun 8, 2016 at 10:24 AM, Pete Robbins <robbin...@gmail.com> wrote:
>
>> I just raised https://issues.apache.org/jira/browse/SPARK-15822 for a
>> similar looking issue. Analyzing the core dump from the segv with Memory
>> Analyzer it looks very much like a UTF8String is very corrupt.
>>
>> Cheers,
>>
>>
>> On Fri, 27 May 2016 at 21:00 Koert Kuipers <ko...@tresata.com> wrote:
>>
>>> hello all,
>>> after getting our unit tests to pass on spark 2.0.0-SNAPSHOT we are now
>>> trying to run some algorithms at scale on our cluster.
>>> unfortunately this means that when i see errors i am having a harder
>>> time boiling it down to a small reproducible example.
>>>
>>> today we are running an iterative algo using the dataset api and we are
>>> seeing tasks fail with errors which seem to related to unsafe operations.
>>> the same tasks succeed without issues in our unit tests.
>>>
>>> i see either:
>>>
>>> 16/05/27 12:54:46 ERROR executor.Executor: Exception in task 31.0 in
>>> stage 21.0 (TID 1073)
>>> java.lang.NegativeArraySizeException
>>>         at
>>> org.apache.spark.unsafe.types.UTF8String.getBytes(UTF8String.java:229)
>>>         at
>>> org.apache.spark.unsafe.types.UTF8String.toString(UTF8String.java:821)
>>>         at
>>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificSafeProjection.apply(Unknown
>>> Source)
>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
>>>         at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
>>>         at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
>>>         at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>>>         at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>>>         at
>>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown
>>> Source)
>>>         at
>>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>>> Source)
>>>         at
>>> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>>>         at
>>> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$7$$anon$1.hasNext(WholeStageCodegenExec.scala:359)
>>>         at
>>> org.apache.spark.sql.execution.aggregate.SortBasedAggregateExec$$anonfun$doExecute$1$$anonfun$3.apply(SortBasedAggregateExec.scala:74)
>>>         at
>>> org.apache.spark.sql.execution.aggregate.SortBasedAggregateExec$$anonfun$doExecute$1$$anonfun$3.apply(SortBasedAggregateExec.scala:71)
>>>         at
>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:775)
>>>         at
>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:775)
>>>         at
>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>         at
>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:318)
>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:282)
>>>         at
>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>         at
>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:318)
>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:282)
>>>         at
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
>>>         at
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
>>>         at org.apache.spark.scheduler.Task.run(Task.scala:85)
>>>         at
>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
>>>         at
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>         at
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>
>>> or alternatively:
>>>
>>> # A fatal error has been detected by the Java Runtime Environment:
>>> #
>>> #  SIGSEGV (0xb) at pc=0x00007fe571041cba, pid=2450, tid=140622965913344
>>> #
>>> # JRE version: Java(TM) SE Runtime Environment (7.0_75-b13) (build
>>> 1.7.0_75-b13)
>>> # Java VM: Java HotSpot(TM) 64-Bit Server VM (24.75-b04 mixed mode
>>> linux-amd64 compressed oops)
>>> # Problematic frame:
>>> # v  ~StubRoutines::jbyte_disjoint_arraycopy
>>>
>>> i assume the best thing would be to try to get it to print out the
>>> generated code that is causing this?
>>> what switch do i need to use again to do so?
>>> thanks,
>>> koert
>>>
>>
>

Reply via email to