According to the documentation
<http://spark.apache.org/docs/latest/mllib-linear-methods.html>, by
default, if wTx≥0 then the outcome is positive, and negative otherwise. I
suppose that wTx is the "score" in my case. If score is more than 0 and the
label is positive, then I return 1 which is correct classification and I
return zero otherwise. Do you have any idea how to classify a point as
positive or negative using this score or another function ?

On Sat, Nov 28, 2015 at 5:14 AM, Jeff Zhang <zjf...@gmail.com> wrote:

>         if((score >=0 && label == 1) || (score <0 && label == 0))
>              {
>               return 1; //correct classiciation
>              }
>              else
>               return 0;
>
>
>
> I suspect score is always between 0 and 1
>
>
>
> On Sat, Nov 28, 2015 at 10:39 AM, Tarek Elgamal <tarek.elga...@gmail.com>
> wrote:
>
>> Hi,
>>
>> I am trying to run the straightforward example of SVm but I am getting
>> low accuracy (around 50%) when I predict using the same data I used for
>> training. I am probably doing the prediction in a wrong way. My code is
>> below. I would appreciate any help.
>>
>>
>> import java.util.List;
>>
>> import org.apache.spark.SparkConf;
>> import org.apache.spark.SparkContext;
>> import org.apache.spark.api.java.JavaRDD;
>> import org.apache.spark.api.java.function.Function;
>> import org.apache.spark.api.java.function.Function2;
>> import org.apache.spark.mllib.classification.SVMModel;
>> import org.apache.spark.mllib.classification.SVMWithSGD;
>> import org.apache.spark.mllib.regression.LabeledPoint;
>> import org.apache.spark.mllib.util.MLUtils;
>>
>> import scala.Tuple2;
>> import edu.illinois.biglbjava.readers.LabeledPointReader;
>>
>> public class SimpleDistSVM {
>>   public static void main(String[] args) {
>>     SparkConf conf = new SparkConf().setAppName("SVM Classifier Example");
>>     SparkContext sc = new SparkContext(conf);
>>     String inputPath=args[0];
>>
>>     // Read training data
>>     JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc,
>> inputPath).toJavaRDD();
>>
>>     // Run training algorithm to build the model.
>>     int numIterations = 3;
>>     final SVMModel model = SVMWithSGD.train(data.rdd(), numIterations);
>>
>>     // Clear the default threshold.
>>     model.clearThreshold();
>>
>>
>>     // Predict points in test set and map to an RDD of 0/1 values where 0
>> is misclassication and 1 is correct classification
>>     JavaRDD<Integer> classification = data.map(new Function<LabeledPoint,
>> Integer>() {
>>          public Integer call(LabeledPoint p) {
>>            int label = (int) p.label();
>>            Double score = model.predict(p.features());
>>            if((score >=0 && label == 1) || (score <0 && label == 0))
>>            {
>>            return 1; //correct classiciation
>>            }
>>            else
>>             return 0;
>>
>>          }
>>        }
>>      );
>>     // sum up all values in the rdd to get the number of correctly
>> classified examples
>>      int sum=classification.reduce(new Function2<Integer, Integer,
>> Integer>()
>>     {
>>     public Integer call(Integer arg0, Integer arg1)
>>     throws Exception {
>>     return arg0+arg1;
>>     }});
>>
>>      //compute accuracy as the percentage of the correctly classified
>> examples
>>      double accuracy=((double)sum)/((double)classification.count());
>>      System.out.println("Accuracy = " + accuracy);
>>
>>         }
>>       }
>>     );
>>   }
>> }
>>
>
>
>
> --
> Best Regards
>
> Jeff Zhang
>

Reply via email to