Thanks for the reply. after rebuild now it looks good. On 8 September 2015 at 22:38, Davies Liu <dav...@databricks.com> wrote:
> I tried with Python 2.7/3.4 and Spark 1.4.1/1.5-RC3, they all work as > expected: > > ``` > >>> from pyspark.mllib.linalg import Vectors > >>> df = sqlContext.createDataFrame([(1.0, Vectors.dense([1.0])), (0.0, > Vectors.sparse(1, [], []))], ["label", "featuers"]) > >>> df.show() > +-----+---------+ > |label| featuers| > +-----+---------+ > | 1.0| [1.0]| > | 0.0|(1,[],[])| > +-----+---------+ > > >>> df.columns > ['label', 'featuers'] > ``` > > On Tue, Sep 8, 2015 at 1:45 AM, Prabeesh K. <prabsma...@gmail.com> wrote: > > I am trying to run the code RandomForestClassifier example in the PySpark > > 1.4.1 documentation, > > > https://spark.apache.org/docs/1.4.1/api/python/pyspark.ml.html#pyspark.ml.classification.RandomForestClassifier > . > > > > Below is screen shot of ipython notebook > > > > > > > > But for df.columns. It shows following error. > > > > > > TypeError Traceback (most recent call > last) > > <ipython-input-79-6a4642092433> in <module>() > > ----> 1 df.columns > > > > /home/datasci/src/spark/python/pyspark/sql/dataframe.pyc in columns(self) > > 484 ['age', 'name'] > > 485 """ > > --> 486 return [f.name for f in self.schema.fields] > > 487 > > 488 @ignore_unicode_prefix > > > > /home/datasci/src/spark/python/pyspark/sql/dataframe.pyc in schema(self) > > 194 """ > > 195 if self._schema is None: > > --> 196 self._schema = > > _parse_datatype_json_string(self._jdf.schema().json()) > > 197 return self._schema > > 198 > > > > /home/datasci/src/spark/python/pyspark/sql/types.pyc in > > _parse_datatype_json_string(json_string) > > 519 >>> check_datatype(structtype_with_udt) > > 520 """ > > --> 521 return _parse_datatype_json_value(json.loads(json_string)) > > 522 > > 523 > > > > /home/datasci/src/spark/python/pyspark/sql/types.pyc in > > _parse_datatype_json_value(json_value) > > 539 tpe = json_value["type"] > > 540 if tpe in _all_complex_types: > > --> 541 return _all_complex_types[tpe].fromJson(json_value) > > 542 elif tpe == 'udt': > > 543 return UserDefinedType.fromJson(json_value) > > > > /home/datasci/src/spark/python/pyspark/sql/types.pyc in fromJson(cls, > json) > > 386 @classmethod > > 387 def fromJson(cls, json): > > --> 388 return StructType([StructField.fromJson(f) for f in > > json["fields"]]) > > 389 > > 390 > > > > /home/datasci/src/spark/python/pyspark/sql/types.pyc in fromJson(cls, > json) > > 347 def fromJson(cls, json): > > 348 return StructField(json["name"], > > --> 349 > _parse_datatype_json_value(json["type"]), > > 350 json["nullable"], > > 351 json["metadata"]) > > > > /home/datasci/src/spark/python/pyspark/sql/types.pyc in > > _parse_datatype_json_value(json_value) > > 541 return _all_complex_types[tpe].fromJson(json_value) > > 542 elif tpe == 'udt': > > --> 543 return UserDefinedType.fromJson(json_value) > > 544 else: > > 545 raise ValueError("not supported type: %s" % tpe) > > > > /home/datasci/src/spark/python/pyspark/sql/types.pyc in fromJson(cls, > json) > > 453 pyModule = pyUDT[:split] > > 454 pyClass = pyUDT[split+1:] > > --> 455 m = __import__(pyModule, globals(), locals(), [pyClass]) > > 456 UDT = getattr(m, pyClass) > > 457 return UDT() > > > > TypeError: Item in ``from list'' not a string > > > > > > > > > > >