Hi, i have a small but very wide dataset (2000 columns). Trying to optimize Dataframe pipeline for it, since it behaves very poorly comparing to rdd operation.
With spark.sql.codegen=true it throws StackOverflow:

15/06/25 16:27:16 INFO CacheManager: Partition rdd_12_3 not found, computing it 15/06/25 16:27:16 INFO HadoopRDD: Input split: file:/home/peter/validation.csv:0+337768 15/06/25 16:27:16 INFO CacheManager: Partition rdd_12_1 not found, computing it 15/06/25 16:27:16 INFO HadoopRDD: Input split: file:/home/peter/work/train.csv:0+15540706 15/06/25 16:27:16 INFO CacheManager: Partition rdd_12_0 not found, computing it 15/06/25 16:27:16 INFO HadoopRDD: Input split: file:/home/peter/holdout.csv:0+336296 15/06/25 16:27:16 INFO CacheManager: Partition rdd_12_2 not found, computing it 15/06/25 16:27:16 INFO HadoopRDD: Input split: file:/home/peter/train.csv:15540706+14866642 15/06/25 16:27:17 ERROR Executor: Exception in task 1.0 in stage 1.0 (TID 2) org.spark-project.guava.util.concurrent.ExecutionError: java.lang.StackOverflowError at org.spark-project.guava.cache.LocalCache$Segment.get(LocalCache.java:2261) at org.spark-project.guava.cache.LocalCache.get(LocalCache.java:4000) at org.spark-project.guava.cache.LocalCache.getOrLoad(LocalCache.java:4004) at org.spark-project.guava.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4874) at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator.generate(CodeGenerator.scala:105) at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator.generate(CodeGenerator.scala:102) at org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:170) at org.apache.spark.sql.execution.Project.buildProjection$lzycompute(basicOperators.scala:38) at org.apache.spark.sql.execution.Project.buildProjection(basicOperators.scala:38) at org.apache.spark.sql.execution.Project$$anonfun$1.apply(basicOperators.scala:41) at org.apache.spark.sql.execution.Project$$anonfun$1.apply(basicOperators.scala:40) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:686) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:686) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69) at org.apache.spark.rdd.RDD.iterator(RDD.scala:242) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:70) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.StackOverflowError at scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1042) at scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047) at scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044) at scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047) at scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044) at scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047) at scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044) at scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047) at scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044) at scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047) at scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044) at scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047) at scala.reflect.internal.Symbols$Symbol.fullName(Symbols.scala:1036) at scala.reflect.internal.Symbols$Symbol.fullName(Symbols.scala:1052) at scala.reflect.internal.Types$TypeRef.needsPreString(Types.scala:2462) at scala.reflect.internal.Types$TypeRef.preString(Types.scala:2465) at scala.reflect.internal.Types$TypeRef.safeToString(Types.scala:2514) at scala.reflect.internal.Types$class.typeToString(Types.scala:7345) at scala.reflect.runtime.JavaUniverse.scala$reflect$runtime$SynchronizedTypes$$super$typeToString(JavaUniverse.scala:12) at scala.reflect.runtime.SynchronizedTypes$class.typeToString(SynchronizedTypes.scala:79) at scala.reflect.runtime.JavaUniverse.typeToString(JavaUniverse.scala:12) at scala.reflect.internal.Types$Type.toString(Types.scala:1018) at scala.reflect.internal.Printers$TreePrinter.printTree(Printers.scala:398) at scala.reflect.internal.Printers$TreePrinter$$anonfun$print$1.apply(Printers.scala:446) at scala.reflect.internal.Printers$TreePrinter$$anonfun$print$1.apply(Printers.scala:443) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) at scala.reflect.internal.Printers$TreePrinter.print(Printers.scala:443) at scala.reflect.internal.Printers$TreePrinter.printOpt(Printers.scala:159) at scala.reflect.internal.Printers$TreePrinter.printTree(Printers.scala:218) at scala.reflect.internal.Printers$TreePrinter$$anonfun$print$1.apply(Printers.scala:446) at scala.reflect.internal.Printers$TreePrinter$$anonfun$print$1.apply(Printers.scala:443) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) at scala.reflect.internal.Printers$TreePrinter.print(Printers.scala:443) at scala.reflect.internal.Printers$TreePrinter$$anonfun$printColumn$2.apply(Printers.scala:95) at scala.reflect.internal.Printers$TreePrinter$$anonfun$printColumn$2.apply(Printers.scala:95) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89) at scala.reflect.internal.Printers$TreePrinter.printSeq(Printers.scala:89)

            ...

For thin dataset it works, but fails for wide one.

Thanks,
Peter Rudenko

Reply via email to