This is really strange. >>> # Spark 1.3.1 >>> print type(results) <class 'pyspark.sql.dataframe.DataFrame'>
>>> a = results.take(1)[0] >>> print type(a) <class 'pyspark.sql.types.Row'> >>> print pyspark.sql.types.Row <class 'pyspark.sql.types.Row'> >>> print type(a) == pyspark.sql.types.Row False >>> print isinstance(a, pyspark.sql.types.Row) False If I set a as follows, then the type checks pass fine. a = pyspark.sql.types.Row('name')('Nick') Is this a bug? What can I do to narrow down the source? results is a massive DataFrame of spark-perf results. Nick