Is there any convention *not* to show java 8 versions in the documentation ?
Le ven. 17 avr. 2015 à 21:39, Reynold Xin <r...@databricks.com> a écrit : > Please do! Thanks. > > > On Fri, Apr 17, 2015 at 2:36 PM, Olivier Girardot < > o.girar...@lateral-thoughts.com> wrote: > >> Ok, do you want me to open a pull request to fix the dedicated >> documentation ? >> >> Le ven. 17 avr. 2015 à 18:14, Reynold Xin <r...@databricks.com> a écrit : >> >>> I think in 1.3 and above, you'd need to do >>> >>> .sql(...).javaRDD().map(..) >>> >>> On Fri, Apr 17, 2015 at 9:22 AM, Olivier Girardot < >>> o.girar...@lateral-thoughts.com> wrote: >>> >>>> Yes thanks ! >>>> >>>> Le ven. 17 avr. 2015 à 16:20, Ted Yu <yuzhih...@gmail.com> a écrit : >>>> >>>> > The image didn't go through. >>>> > >>>> > I think you were referring to: >>>> > override def map[R: ClassTag](f: Row => R): RDD[R] = rdd.map(f) >>>> > >>>> > Cheers >>>> > >>>> > On Fri, Apr 17, 2015 at 6:07 AM, Olivier Girardot < >>>> > o.girar...@lateral-thoughts.com> wrote: >>>> > >>>> > > Hi everyone, >>>> > > I had an issue trying to use Spark SQL from Java (8 or 7), I tried >>>> to >>>> > > reproduce it in a small test case close to the actual documentation >>>> > > < >>>> > >>>> https://spark.apache.org/docs/latest/sql-programming-guide.html#inferring-the-schema-using-reflection >>>> > >, >>>> > > so sorry for the long mail, but this is "Java" : >>>> > > >>>> > > import org.apache.spark.api.java.JavaRDD; >>>> > > import org.apache.spark.api.java.JavaSparkContext; >>>> > > import org.apache.spark.sql.DataFrame; >>>> > > import org.apache.spark.sql.SQLContext; >>>> > > >>>> > > import java.io.Serializable; >>>> > > import java.util.ArrayList; >>>> > > import java.util.Arrays; >>>> > > import java.util.List; >>>> > > >>>> > > class Movie implements Serializable { >>>> > > private int id; >>>> > > private String name; >>>> > > >>>> > > public Movie(int id, String name) { >>>> > > this.id = id; >>>> > > this.name = name; >>>> > > } >>>> > > >>>> > > public int getId() { >>>> > > return id; >>>> > > } >>>> > > >>>> > > public void setId(int id) { >>>> > > this.id = id; >>>> > > } >>>> > > >>>> > > public String getName() { >>>> > > return name; >>>> > > } >>>> > > >>>> > > public void setName(String name) { >>>> > > this.name = name; >>>> > > } >>>> > > } >>>> > > >>>> > > public class SparkSQLTest { >>>> > > public static void main(String[] args) { >>>> > > SparkConf conf = new SparkConf(); >>>> > > conf.setAppName("My Application"); >>>> > > conf.setMaster("local"); >>>> > > JavaSparkContext sc = new JavaSparkContext(conf); >>>> > > >>>> > > ArrayList<Movie> movieArrayList = new ArrayList<Movie>(); >>>> > > movieArrayList.add(new Movie(1, "Indiana Jones")); >>>> > > >>>> > > JavaRDD<Movie> movies = sc.parallelize(movieArrayList); >>>> > > >>>> > > SQLContext sqlContext = new SQLContext(sc); >>>> > > DataFrame frame = sqlContext.applySchema(movies, >>>> Movie.class); >>>> > > frame.registerTempTable("movies"); >>>> > > >>>> > > sqlContext.sql("select name from movies") >>>> > > >>>> > > * .map(row -> row.getString(0)) // this is what i >>>> would >>>> > expect to work * .collect(); >>>> > > } >>>> > > } >>>> > > >>>> > > >>>> > > But this does not compile, here's the compilation error : >>>> > > >>>> > > [ERROR] >>>> > > >>>> > >>>> /Users/ogirardot/Documents/spark/java-project/src/main/java/org/apache/spark/MainSQL.java:[37,47] >>>> > > method map in class org.apache.spark.sql.DataFrame cannot be >>>> applied to >>>> > > given types; >>>> > > [ERROR] *required: >>>> > > >>>> scala.Function1<org.apache.spark.sql.Row,R>,scala.reflect.ClassTag<R> * >>>> > > [ERROR]* found: (row)->"Na[...]ng(0) * >>>> > > [ERROR] *reason: cannot infer type-variable(s) R * >>>> > > [ERROR] *(actual and formal argument lists differ in length) * >>>> > > [ERROR] >>>> > > >>>> > >>>> /Users/ogirardot/Documents/spark/java-project/src/main/java/org/apache/spark/SampleSHit.java:[56,17] >>>> > > method map in class org.apache.spark.sql.DataFrame cannot be >>>> applied to >>>> > > given types; >>>> > > [ERROR] required: >>>> > > >>>> scala.Function1<org.apache.spark.sql.Row,R>,scala.reflect.ClassTag<R> >>>> > > [ERROR] found: (row)->row[...]ng(0) >>>> > > [ERROR] reason: cannot infer type-variable(s) R >>>> > > [ERROR] (actual and formal argument lists differ in length) >>>> > > [ERROR] -> [Help 1] >>>> > > >>>> > > Because in the DataFrame the *map *method is defined as : >>>> > > >>>> > > [image: Images intégrées 1] >>>> > > >>>> > > And once this is translated to bytecode the actual Java signature >>>> uses a >>>> > > Function1 and adds a ClassTag parameter. >>>> > > I can try to go around this and use the scala.reflect.ClassTag$ like >>>> > that : >>>> > > >>>> > > ClassTag$.MODULE$.apply(String.class) >>>> > > >>>> > > To get the second ClassTag parameter right, but then instantiating a >>>> > java.util.Function or using the Java 8 lambdas fail to work, and if I >>>> try >>>> > to instantiate a proper scala Function1... well this is a world of >>>> pain. >>>> > > >>>> > > This is a regression introduced by the 1.3.x DataFrame because >>>> > JavaSchemaRDD used to be JavaRDDLike but DataFrame's are not (and are >>>> not >>>> > callable with JFunctions), I can open a Jira if you want ? >>>> > > >>>> > > Regards, >>>> > > >>>> > > -- >>>> > > *Olivier Girardot* | Associé >>>> > > o.girar...@lateral-thoughts.com >>>> > > +33 6 24 09 17 94 >>>> > > >>>> > >>>> >>> >>> >