I was suggesting you mark the variable that is holding the HiveContext
'@transient' since the scala compiler is not correctly propagating this
through the tuple extraction.  This is only a workaround.  We can also
remove the tuple extraction.

On Mon, Feb 16, 2015 at 10:47 AM, Reynold Xin <r...@databricks.com> wrote:

> Michael - it is already transient. This should probably considered a bug
> in the scala compiler, but we can easily work around it by removing the use
> of destructuring binding.
>
> On Mon, Feb 16, 2015 at 10:41 AM, Michael Armbrust <mich...@databricks.com
> > wrote:
>
>> I'd suggest marking the HiveContext as @transient since its not valid to
>> use it on the slaves anyway.
>>
>> On Mon, Feb 16, 2015 at 4:27 AM, Haopu Wang <hw...@qilinsoft.com> wrote:
>>
>> > When I'm investigating this issue (in the end of this email), I take a
>> > look at HiveContext's code and find this change
>> > (
>> https://github.com/apache/spark/commit/64945f868443fbc59cb34b34c16d782d
>> > da0fb63d#diff-ff50aea397a607b79df9bec6f2a841db):
>> >
>> >
>> >
>> > -  @transient protected[hive] lazy val hiveconf = new
>> > HiveConf(classOf[SessionState])
>> >
>> > -  @transient protected[hive] lazy val sessionState = {
>> >
>> > -    val ss = new SessionState(hiveconf)
>> >
>> > -    setConf(hiveconf.getAllProperties)  // Have SQLConf pick up the
>> > initial set of HiveConf.
>> >
>> > -    ss
>> >
>> > -  }
>> >
>> > +  @transient protected[hive] lazy val (hiveconf, sessionState) =
>> >
>> > +    Option(SessionState.get())
>> >
>> > +      .orElse {
>> >
>> >
>> >
>> > With the new change, Scala compiler always generate a Tuple2 field of
>> > HiveContext as below:
>> >
>> >
>> >
>> >     private Tuple2 x$3;
>> >
>> >     private transient OutputStream outputBuffer;
>> >
>> >     private transient HiveConf hiveconf;
>> >
>> >     private transient SessionState sessionState;
>> >
>> >     private transient HiveMetastoreCatalog catalog;
>> >
>> >
>> >
>> > That "x$3" field's key is HiveConf object that cannot be serialized. So
>> > can you suggest how to resolve this issue? Thank you very much!
>> >
>> >
>> >
>> > ================================
>> >
>> >
>> >
>> > I have a streaming application which registered temp table on a
>> > HiveContext for each batch duration.
>> >
>> > The application runs well in Spark 1.1.0. But I get below error from
>> > 1.1.1.
>> >
>> > Do you have any suggestions to resolve it? Thank you!
>> >
>> >
>> >
>> > java.io.NotSerializableException: org.apache.hadoop.hive.conf.HiveConf
>> >
>> >     - field (class "scala.Tuple2", name: "_1", type: "class
>> > java.lang.Object")
>> >
>> >     - object (class "scala.Tuple2", (Configuration: core-default.xml,
>> > core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml,
>> > yarn-site.xml, hdfs-default.xml, hdfs-site.xml,
>> > org.apache.hadoop.hive.conf.LoopingByteArrayInputStream@2158ce23
>> ,org.apa
>> > che.hadoop.hive.ql.session.SessionState@49b6eef9))
>> >
>> >     - field (class "org.apache.spark.sql.hive.HiveContext", name: "x$3",
>> > type: "class scala.Tuple2")
>> >
>> >     - object (class "org.apache.spark.sql.hive.HiveContext",
>> > org.apache.spark.sql.hive.HiveContext@4e6e66a4)
>> >
>> >     - field (class
>> > "example.BaseQueryableDStream$$anonfun$registerTempTable$2", name:
>> > "sqlContext$1", type: "class org.apache.spark.sql.SQLContext")
>> >
>> >    - object (class
>> > "example.BaseQueryableDStream$$anonfun$registerTempTable$2",
>> > <function1>)
>> >
>> >     - field (class
>> > "org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1",
>> > name: "foreachFunc$1", type: "interface scala.Function1")
>> >
>> >     - object (class
>> > "org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1",
>> > <function2>)
>> >
>> >     - field (class "org.apache.spark.streaming.dstream.ForEachDStream",
>> > name: "org$apache$spark$streaming$dstream$ForEachDStream$$foreachFunc",
>> > type: "interface scala.Function2")
>> >
>> >     - object (class "org.apache.spark.streaming.dstream.ForEachDStream",
>> > org.apache.spark.streaming.dstream.ForEachDStream@5ccbdc20)
>> >
>> >     - element of array (index: 0)
>> >
>> >     - array (class "[Ljava.lang.Object;", size: 16)
>> >
>> >     - field (class "scala.collection.mutable.ArrayBuffer", name:
>> > "array", type: "class [Ljava.lang.Object;")
>> >
>> >     - object (class "scala.collection.mutable.ArrayBuffer",
>> > ArrayBuffer(org.apache.spark.streaming.dstream.ForEachDStream@5ccbdc20
>> ))
>> >
>> >     - field (class "org.apache.spark.streaming.DStreamGraph", name:
>> > "outputStreams", type: "class scala.collection.mutable.ArrayBuffer")
>> >
>> >     - custom writeObject data (class
>> > "org.apache.spark.streaming.DStreamGraph")
>> >
>> >     - object (class "org.apache.spark.streaming.DStreamGraph",
>> > org.apache.spark.streaming.DStreamGraph@776ae7da)
>> >
>> >     - field (class "org.apache.spark.streaming.Checkpoint", name:
>> > "graph", type: "class org.apache.spark.streaming.DStreamGraph")
>> >
>> >     - root object (class "org.apache.spark.streaming.Checkpoint",
>> > org.apache.spark.streaming.Checkpoint@5eade065)
>> >
>> >     at java.io.ObjectOutputStream.writeObject0(Unknown Source)
>> >
>> >
>> >
>> >
>> >
>> >
>> >
>> >
>>
>
>

Reply via email to