One thing I like to clarify is that we do not support running a newer
version of a Spark component on top of a older version of Spark core.
I don't remember any code change in MLlib that requires Spark v1.1 but
I might miss some PRs. There were changes to CoGroup, which may be
relevant:

https://github.com/apache/spark/commits/master/core/src/main/scala/org/apache/spark/rdd/CoGroupedRDD.scala

Btw, for the constrained optimization, I'm really interested in how
they differ in the final recommendation? It would be great if you can
test prec@k or ndcg@k metrics.

Best,
Xiangrui

On Wed, Aug 6, 2014 at 8:28 AM, Debasish Das <debasish.da...@gmail.com> wrote:
> Hi Xiangrui,
>
> Maintaining another file will be a pain later so I deployed spark 1.0.1
> without mllib and then my application jar bundles mllib 1.1.0-SNAPSHOT along
> with the code changes for quadratic optimization...
>
> Later the plan is to patch the snapshot mllib with the deployed stable
> mllib...
>
> There are 5 variants that I am experimenting with around 400M ratings (daily
> data, monthly data I will update in few days)...
>
> 1. LS
> 2. NNLS
> 3. Quadratic with bounds
> 4. Quadratic with L1
> 5. Quadratic with equality and positivity
>
> Now the ALS 1.1.0 snapshot runs fine but after completion on this step
> ALS.scala:311
>
> // Materialize usersOut and productsOut.
> usersOut.count()
>
> I am getting from one of the executors: java.lang.ClassCastException:
> scala.Tuple1 cannot be cast to scala.Product2
>
> I am debugging it further but I was wondering if this is due to RDD
> compatibility within 1.0.1 and 1.1.0-SNAPSHOT ?
>
> I have built the jars on my Mac which has Java 1.7.0_55 but the deployed
> cluster has Java 1.7.0_45.
>
> The flow runs fine on my localhost spark 1.0.1 with 1 worker. Can that Java
> version mismatch cause this ?
>
> Stack traces are below
>
> Thanks.
> Deb
>
>
> Executor stacktrace:
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:156)
>
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:154)
>
>
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>
>         scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>
>         org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:154)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>
> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>
> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>
> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:126)
>
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:123)
>
>
> scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
>
>
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>
>         scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
>
>
> scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
>
>         org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:123)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>
> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>
> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>         org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33)
>
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
>
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:158)
>
>
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
>
>         org.apache.spark.scheduler.Task.run(Task.scala:51)
>
>
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:183)
>
>
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>
>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>
>         java.lang.Thread.run(Thread.java:744)
>
> Driver stacktrace:
>
> at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1044)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1028)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1026)
>
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
>
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
>
> at scala.Option.foreach(Option.scala:236)
>
> at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634)
>
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229)
>
> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>
> at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>
> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>
> at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>
> at
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
>
> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>
> at
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>
> at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>
> at
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>
>
>
> On Tue, Aug 5, 2014 at 5:59 PM, Debasish Das <debasish.da...@gmail.com>
> wrote:
>>
>> Hi Xiangrui,
>>
>> I used your idea and kept a cherry picked version of ALS.scala in my
>> application and call it ALSQp.scala...this is a OK workaround for now till a
>> version adds up to master for example...
>>
>> For the bug with userClassPathFirst, looks like Koert already found this
>> issue in the following JIRA:
>>
>> https://issues.apache.org/jira/browse/SPARK-1863
>>
>> By the way the userClassPathFirst feature is very useful since I am sure
>> the deployed version of spark on a production cluster will always be the
>> last stable (core at 1.0.1 in my case) and people would like to deploy
>> SNAPSHOT versions of libraries that build on top of spark core (mllib,
>> streaming etc)...
>>
>> Another way is to have a build option that deploys only the core and not
>> the libraries built upon core...
>>
>> Do we have an option like that in make-distribution script ?
>>
>> Thanks.
>> Deb
>>
>>
>> On Tue, Aug 5, 2014 at 10:37 AM, Xiangrui Meng <men...@gmail.com> wrote:
>>>
>>> If you cannot change the Spark jar deployed on the cluster, an easy
>>> solution would be renaming ALS in your jar. If userClassPathFirst
>>> doesn't work, could you create a JIRA and attach the log? Thanks!
>>> -Xiangrui
>>>
>>> On Tue, Aug 5, 2014 at 9:10 AM, Debasish Das <debasish.da...@gmail.com>
>>> wrote:
>>> > I created the assembly file but still it wants to pick the mllib from
>>> > the
>>> > cluster:
>>> >
>>> > jar tf ./target/ml-0.0.1-SNAPSHOT-jar-with-dependencies.jar | grep
>>> > QuadraticMinimizer
>>> >
>>> > org/apache/spark/mllib/optimization/QuadraticMinimizer$$anon$1.class
>>> >
>>> > /Users/v606014/dist-1.0.1/bin/spark-submit --master
>>> > spark://TUSCA09LMLVT00C.local:7077 --class ALSDriver
>>> > ./target/ml-0.0.1-SNAPSHOT-jar-with-dependencies.jar inputPath
>>> > outputPath
>>> >
>>> > Exception in thread "main" java.lang.NoSuchMethodError:
>>> >
>>> > org.apache.spark.mllib.recommendation.ALS.setLambdaL1(D)Lorg/apache/spark/mllib/recommendation/ALS;
>>> >
>>> > Now if I force it to use the jar that I gave using
>>> > spark.files.userClassPathFirst, then it fails on some serialization
>>> > issues...
>>> >
>>> > A simple solution is to cherry pick the files I need from spark branch
>>> > to
>>> > the application branch but I am not sure that's the right thing to
>>> > do...
>>> >
>>> > The way userClassPathFirst is behaving, there might be bugs in it...
>>> >
>>> > Any suggestions will be appreciated....
>>> >
>>> > Thanks.
>>> > Deb
>>> >
>>> >
>>> > On Sat, Aug 2, 2014 at 11:12 AM, Xiangrui Meng <men...@gmail.com>
>>> > wrote:
>>> >>
>>> >> Yes, that should work. spark-mllib-1.1.0 should be compatible with
>>> >> spark-core-1.0.1.
>>> >>
>>> >> On Sat, Aug 2, 2014 at 10:54 AM, Debasish Das
>>> >> <debasish.da...@gmail.com>
>>> >> wrote:
>>> >> > Let me try it...
>>> >> >
>>> >> > Will this be fixed if I generate a assembly file with mllib-1.1.0
>>> >> > SNAPSHOT
>>> >> > jar and other dependencies with the rest of the application code ?
>>> >> >
>>> >> >
>>> >> >
>>> >> > On Sat, Aug 2, 2014 at 10:46 AM, Xiangrui Meng <men...@gmail.com>
>>> >> > wrote:
>>> >> >>
>>> >> >> You can try enabling "spark.files.userClassPathFirst". But I'm not
>>> >> >> sure whether it could solve your problem. -Xiangrui
>>> >> >>
>>> >> >> On Sat, Aug 2, 2014 at 10:13 AM, Debasish Das
>>> >> >> <debasish.da...@gmail.com>
>>> >> >> wrote:
>>> >> >> > Hi,
>>> >> >> >
>>> >> >> > I have deployed spark stable 1.0.1 on the cluster but I have new
>>> >> >> > code
>>> >> >> > that
>>> >> >> > I added in mllib-1.1.0-SNAPSHOT.
>>> >> >> >
>>> >> >> > I am trying to access the new code using spark-submit as follows:
>>> >> >> >
>>> >> >> > spark-job --class com.verizon.bda.mllib.recommendation.ALSDriver
>>> >> >> > --executor-memory 16g --total-executor-cores 16 --jars
>>> >> >> > spark-mllib_2.10-1.1.0-SNAPSHOT.jar,scopt_2.10-3.2.0.jar
>>> >> >> > sag-core-0.0.1-SNAPSHOT.jar --rank 25 --numIterations 10 --lambda
>>> >> >> > 1.0
>>> >> >> > --qpProblem 2 inputPath outputPath
>>> >> >> >
>>> >> >> > I can see the jars are getting added to httpServer as expected:
>>> >> >> >
>>> >> >> > 14/08/02 12:50:04 INFO SparkContext: Added JAR
>>> >> >> >
>>> >> >> > file:/vzhome/v606014/spark-glm/spark-mllib_2.10-1.1.0-SNAPSHOT.jar 
>>> >> >> > at
>>> >> >> >
>>> >> >> > http://10.145.84.20:37798/jars/spark-mllib_2.10-1.1.0-SNAPSHOT.jar
>>> >> >> > with
>>> >> >> > timestamp 1406998204236
>>> >> >> >
>>> >> >> > 14/08/02 12:50:04 INFO SparkContext: Added JAR
>>> >> >> > file:/vzhome/v606014/spark-glm/scopt_2.10-3.2.0.jar at
>>> >> >> > http://10.145.84.20:37798/jars/scopt_2.10-3.2.0.jar with
>>> >> >> > timestamp
>>> >> >> > 1406998204237
>>> >> >> >
>>> >> >> > 14/08/02 12:50:04 INFO SparkContext: Added JAR
>>> >> >> > file:/vzhome/v606014/spark-glm/sag-core-0.0.1-SNAPSHOT.jar at
>>> >> >> > http://10.145.84.20:37798/jars/sag-core-0.0.1-SNAPSHOT.jar with
>>> >> >> > timestamp
>>> >> >> > 1406998204238
>>> >> >> >
>>> >> >> > But the job still can't access code form mllib-1.1.0
>>> >> >> > SNAPSHOT.jar...I
>>> >> >> > think
>>> >> >> > it's picking up the mllib from cluster which is at 1.0.1...
>>> >> >> >
>>> >> >> > Please help. I will ask for a PR tomorrow but internally we want
>>> >> >> > to
>>> >> >> > generate results from the new code.
>>> >> >> >
>>> >> >> > Thanks.
>>> >> >> >
>>> >> >> > Deb
>>> >> >
>>> >> >
>>> >
>>> >
>>
>>
>

---------------------------------------------------------------------
To unsubscribe, e-mail: dev-unsubscr...@spark.apache.org
For additional commands, e-mail: dev-h...@spark.apache.org

Reply via email to