For hortonworks, I believe it should work to just link against the
corresponding upstream version. I.e. just set the Hadoop version to "2.4.0"

Does that work?

- Patrick


On Mon, Aug 4, 2014 at 12:13 AM, Ron's Yahoo! <zlgonza...@yahoo.com.invalid>
wrote:

> Hi,
>   Not sure whose issue this is, but if I run make-distribution using HDP
> 2.4.0.2.1.3.0-563 as the hadoop version (replacing it in
> make-distribution.sh), I get a strange error with the exception below. If I
> use a slightly older version of HDP (2.4.0.2.1.2.0-402) with
> make-distribution, using the generated assembly all works fine for me.
> Either 1.0.0 or 1.0.1 will work fine.
>
>   Should I file a JIRA or is this a known issue?
>
> Thanks,
> Ron
>
> Exception in thread "main" org.apache.spark.SparkException: Job aborted
> due to stage failure: Task 0.0:0 failed 1 times, most recent failure:
> Exception failure in TID 0 on host localhost:
> java.lang.IncompatibleClassChangeError: Found interface
> org.apache.hadoop.mapreduce.TaskAttemptContext, but class was expected
>         org.apache.avro.mapreduce.AvroKeyInputFormat.createRecordReader(
> AvroKeyInputFormat.java:47)
>         org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(
> NewHadoopRDD.scala:111)
>         org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:99)
>         org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:61)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>         org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:77)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
>         org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>         org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111
> )
>         org.apache.spark.scheduler.Task.run(Task.scala:51)
>         org.apache.spark.executor.Executor$TaskRunner.run(
> Executor.scala:187)
>         java.util.concurrent.ThreadPoolExecutor.runWorker(
> ThreadPoolExecutor.java:1145)
>         java.util.concurrent.ThreadPoolExecutor$Worker.run(
> ThreadPoolExecutor.java:615)
>         java.lang.Thread.run(Thread.java:745)
>

Reply via email to