Github user pwendell commented on a diff in the pull request: https://github.com/apache/spark/pull/120#discussion_r10553691 --- Diff: yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala --- @@ -133,11 +148,11 @@ class ClientArguments(val args: Array[String], val sparkConf: SparkConf) { " --class CLASS_NAME Name of your application's main class (required)\n" + " --args ARGS Arguments to be passed to your application's main class.\n" + " Mutliple invocations are possible, each will be passed in order.\n" + - " --num-workers NUM Number of workers to start (Default: 2)\n" + - " --worker-cores NUM Number of cores for the workers (Default: 1).\n" + - " --master-class CLASS_NAME Class Name for Master (Default: spark.deploy.yarn.ApplicationMaster)\n" + - " --master-memory MEM Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)\n" + - " --worker-memory MEM Memory per Worker (e.g. 1000M, 2G) (Default: 1G)\n" + + " --num-executors NUM Number of executors to start (Default: 2)\n" + + " --executor-cores NUM Number of cores for the executors (Default: 1).\n" + + " --am-class CLASS_NAME Class Name for application master (Default: spark.deploy.yarn.ApplicationMaster)\n" + --- End diff -- On this one I'm still a bit confused. @tgravescs what was the reason for making this configurable? Are there other ApplicationMaster implementations that could be used here?
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---