Then I don't see any simple solution here at least for a novice, especially
since I don't know what can trigger the boolean flag to true.
On 27 Jun 2016 5:38 p.m., "Guozhang Wang" <wangg...@gmail.com> wrote:

> My concern is that, the overhead of requesting the source KTable to be
> materialized (i.e. creating a state store, and sending the {old -> new}
> pair instead of the new value only) may be over-whelming compared with its
> potential benefits of reducing the downstream traffic.
>
> Guozhang
>
> On Sun, Jun 26, 2016 at 8:58 AM, Philippe Derome <phder...@gmail.com>
> wrote:
>
> > Guozhang,
> >
> > would you say it's advisable to initialize KTableFilter.sendOldValues to
> > true instead of false? That's what I see that can trigger your described
> > case 3 to potentially desirable effect, but I didn't include it into pull
> > request. If left to default value of false, I don't know what mechanism
> > should override it to true.
> >
> > Phil
> >
> > On Sun, Jun 26, 2016 at 12:07 AM, Guozhang Wang <wangg...@gmail.com>
> > wrote:
> >
> > > Thanks! You can follow this step-by-step guidance to contribute to
> Kafka
> > > via github.
> > >
> > >
> > >
> >
> https://cwiki.apache.org/confluence/display/KAFKA/Contributing+Code+Changes#ContributingCodeChanges-PullRequest
> > >
> > >
> > > Guozhang
> > >
> > >
> > > On Sat, Jun 25, 2016 at 8:40 PM, Philippe Derome <phder...@gmail.com>
> > > wrote:
> > >
> > > > I have a 1 liner solution for this in KTableFilter.java and about 5-6
> > > lines
> > > > changes to existing unit test KTableFilterTest.testSendingOldValue. I
> > > > included those lines with context in the JIRA. I am struggling a bit
> > with
> > > > github being new to it and how to do a proper pull request so
> hopefully
> > > > that can be followed up by you? I had the streams test suite pass
> aside
> > > for
> > > > a few cases that pertain specifically to this JIRA as assumptions
> have
> > > now
> > > > changed.
> > > >
> > > > On Sat, Jun 25, 2016 at 1:14 AM, Guozhang Wang <wangg...@gmail.com>
> > > wrote:
> > > >
> > > > > Hi Philippe,
> > > > >
> > > > > Great, since you agree with my reasonings, I have created a JIRA
> > ticket
> > > > for
> > > > > optimizing KTableFilter (feel free to pick it up if you are
> > interested
> > > in
> > > > > contributing):
> > > > >
> > > > > https://issues.apache.org/jira/browse/KAFKA-3902
> > > > >
> > > > > About case 3-c-1), what I meant is that since "predicate return
> true
> > on
> > > > > both",
> > > > > the resulted pair would just be the same as the original pair.
> > > > >
> > > > > About KIP-63, itself is a rather big story, but it has one
> > > correspondence
> > > > > to this JIRA: with caching you can dedup some records with the same
> > > key,
> > > > > for example in the input records to the KTable is:
> > > > >
> > > > > <a: 1>, <a: 2>, <a: 3>, <a: 4>, <a: 5>, <a: 6> ...
> > > > >
> > > > > And the KTable is materialized into a state store with cache on top
> > of
> > > > it,
> > > > > then the resulted downstream could be:
> > > > >
> > > > > <a: {null -> 1}>, <a: {1 -> 6}> ...
> > > > >
> > > > > Instead of
> > > > >
> > > > > <a: {null -> 1}>, <a: {1 -> 2}>, <a: {2 -> 3}>, ... <a: {5 -> 6}>
> ...
> > > > >
> > > > > So if it is piped to a filter() operator, then even less data will
> be
> > > > > produced.
> > > > >
> > > > >
> > > > > Guozhang
> > > > >
> > > > >
> > > > > On Fri, Jun 24, 2016 at 5:58 PM, Philippe Derome <
> phder...@gmail.com
> > >
> > > > > wrote:
> > > > >
> > > > > > Yes, it looks very good. Your detailed explanation appears
> > compelling
> > > > > > enough to reveal that some of the details of the complexity of a
> > > > streams
> > > > > > system are probably inherent complexity (not that I dared assume
> it
> > > was
> > > > > > "easy" but I could afford to be conveniently unaware). It took me
> > 30
> > > > > > minutes to grasp this latest response.
> > > > > >
> > > > > > There might be a typo in your email for case 3.c.1) as I would
> > think
> > > we
> > > > > > should send the most recent pair as opposed to original, in any
> > event
> > > > it
> > > > > > does not materially impact your presentation.
> > > > > >
> > > > > > Your case 3a) is really what triggered my line of questioning
> and I
> > > > found
> > > > > > the current behaviour vexing as it may lead to some undesirable
> and
> > > > > > necessary filter (see Michael G. Noll's fix in
> > > UserRegionLambdaExample
> > > > at
> > > > > > the very end trying to weed out null) used to output to topic to
> > > > console.
> > > > > > Without looking at design, it seemed self-evident to me that the
> > 3a)
> > > > > > behaviour had to be implemented ( from my point of view with the
> > code
> > > > > > example I was looking at, it simply means never say to delete a
> key
> > > > that
> > > > > > was never created, simply don't "create a deleted" key).
> > > > > >
> > > > > > Likewise cases 3 b,c look very reasonable.
> > > > > >
> > > > > > Just out of curiosity, did you effectively just restate the
> essence
> > > of
> > > > > > KIP-63 in a more approachable language I could understand or is
> > > KIP-63
> > > > > > really a different beast?
> > > > > >
> > > > > >
> > > > > >
> > > > > > On Fri, Jun 24, 2016 at 5:45 PM, Guozhang Wang <
> wangg...@gmail.com
> > >
> > > > > wrote:
> > > > > >
> > > > > > > Hello Philippe,
> > > > > > >
> > > > > > > Very good points, let me dump my thoughts about "KTable.filter"
> > > > > > > specifically and how we can improve on that:
> > > > > > >
> > > > > > > 1. Some context: when a KTable participates in a downstream
> > > operators
> > > > > > (e.g.
> > > > > > > if that operator is an aggregation), then we need to
> materialize
> > > this
> > > > > > > KTable and send both its old value as well as new value as a
> pair
> > > > {old
> > > > > ->
> > > > > > > new} to the downstream operator. In practice it usually needs
> to
> > > send
> > > > > the
> > > > > > > pair.
> > > > > > >
> > > > > > > So let's discuss about them separately, take the following
> > example
> > > > > source
> > > > > > > stream for your KTable
> > > > > > >
> > > > > > > <a: 1>, <b: 2>, <a: 3> ...
> > > > > > >
> > > > > > > When the KTable needs to be materialized, it will transform the
> > > > source
> > > > > > > messages into the pairs of:
> > > > > > >
> > > > > > > <a: {null -> 1}>, <b: {nul -> 2}>, <a: {1 -> 3}>
> > > > > > >
> > > > > > > 2. If "send old value" is not enabled, then when the filter
> > > predicate
> > > > > > > returns false, we MUST send a <key: null> to the downstream
> > > operator
> > > > to
> > > > > > > indicate that this key is being filtered in the table.
> Otherwise,
> > > for
> > > > > > > example if your filter is "value < 2", then the updated value
> <a:
> > > 3>
> > > > > will
> > > > > > > just be filtered, resulting in incorrect semantics.
> > > > > > >
> > > > > > > If it returns true we should still send the original <key:
> value>
> > > to
> > > > > > > downstream operators.
> > > > > > >
> > > > > > > 3. If "send old value" is enabled, then there are a couple of
> > cases
> > > > we
> > > > > > can
> > > > > > > consider:
> > > > > > >
> > > > > > >     a. If old value is <key: null> and new value is <key:
> > > not-null>,
> > > > > and
> > > > > > > the filter predicate return false for the new value, then in
> this
> > > > case
> > > > > it
> > > > > > > is safe to optimize and not returning anything to the
> downstream
> > > > > > operator,
> > > > > > > since in this case we know there is no value for the key
> > previously
> > > > > > > anyways; otherwise we send the original pair.
> > > > > > >
> > > > > > >     b. If old value is <key: not-null> and new value is <key:
> > > null>,
> > > > > > > indicating to delete this key, and the filter predicate return
> > > false
> > > > > for
> > > > > > > the old value, then in this case it is safe to optimize and not
> > > > > returning
> > > > > > > anything to the downstream operator, since we know that the old
> > > value
> > > > > has
> > > > > > > already been filtered in a previous message; otherwise we send
> > the
> > > > > > original
> > > > > > > pair.
> > > > > > >
> > > > > > >     c. If both old and new values are not null, and:
> > > > > > >
> > > > > > >
> > > > > > >   1) predicate return true on both, send the original pair;
> > > > > > >
> > > > > > >   2) predicate return false on both, we can optimize and do not
> > > send
> > > > > > > anything;
> > > > > > >
> > > > > > >   3) predicate return true on old and false on new, send the
> key:
> > > > {old
> > > > > ->
> > > > > > > null};
> > > > > > >
> > > > > > >   4) predicate return false on old and true on new, send the
> key:
> > > > {null
> > > > > > ->
> > > > > > > new};
> > > > > > >
> > > > > > > Does this sounds good to you?
> > > > > > >
> > > > > > >
> > > > > > > Guozhang
> > > > > > >
> > > > > > >
> > > > > > > On Thu, Jun 23, 2016 at 6:17 PM, Philippe Derome <
> > > phder...@gmail.com
> > > > >
> > > > > > > wrote:
> > > > > > >
> > > > > > > > Thanks a lot for the detailed feedback, its clarity and the
> > > > reference
> > > > > > to
> > > > > > > > KIP-63, which however is for the most part above my head for
> > now.
> > > > > > > >
> > > > > > > > Having said that, I still hold the view that the behaviour I
> > > > > presented
> > > > > > is
> > > > > > > > undesirable and hardly defensible and we may have no choice
> but
> > > to
> > > > > > agree
> > > > > > > to
> > > > > > > > disagree and it could be a sterile discussion to keep at it
> and
> > > > > > > addressing
> > > > > > > > KIP-63 and other issues are more important than my brief
> > > > observation.
> > > > > > > >
> > > > > > > > What follows supports my point of view that the filter method
> > is
> > > > not
> > > > > > > > behaving as expected and I'd still think it's a defect,
> > however I
> > > > am
> > > > > > > > guarded with my observation admitting my status of "total
> > newbie"
> > > > at
> > > > > > > stream
> > > > > > > > processing and Kafka.
> > > > > > > >
> > > > > > > > if we rewrite the code snippet I provided from
> > > > > > > > KTable<String, *String*> regionCounts = userRegions
> > > > > > > >      .groupBy((userId, region) -> KeyValue.pair(region,
> > region))
> > > > > > > >      .count("CountsByRegion")
> > > > > > > >      .filter((regionName, count) -> false)
> > > > > > > >      .mapValues(count -> count.toString());
> > > > > > > >
> > > > > > > > to
> > > > > > > >
> > > > > > > >
> > > > > > > > KTable<String, Long> regionCounts1 = userRegions
> > > > > > > >     .groupBy((userId, region) -> KeyValue.pair(region,
> region))
> > > > > > > >     .count("CountsByRegion");
> > > > > > > >
> > > > > > > > KTable<String, String> regionCounts = regionCounts1
> > > > > > > >     .filter((regionName, count) -> false)
> > > > > > > >     .mapValues(count -> count.toString());
> > > > > > > >
> > > > > > > >
> > > > > > > > It becomes clear that regionCounts1 could build up plenty of
> > keys
> > > > > with
> > > > > > > > valid Long counts, normal behaviour
> > > > > > > >
> > > > > > > >  (I think you call this a node in the topology in KIP-63 and
> > > > > > > > regionCounts is a successor node).
> > > > > > > >
> > > > > > > > These regionCounts1 keys are then exposed to evaluation of
> > KTable
> > > > > > > > regionCounts as an input. But why should there be any key
> > created
> > > > in
> > > > > > > > KTable regionCounts that has a false filter? In other words,
> > the
> > > > > > > > "optimization"
> > > > > > > >
> > > > > > > > seems really compelling here: do not create a key before that
> > key
> > > > > > > > becomes relevant. The key with a null value is valid and
> > relevant
> > > > in
> > > > > > > > regionCounts1 but not regionCounts. By a programming
> > composition
> > > > > > > > argument, the original block
> > > > > > > >
> > > > > > > > of code I presented should be equivalent to the broken down
> one
> > > in
> > > > > two
> > > > > > > > blocks here (and I guess that's saying 1 unified node in the
> > > > topology
> > > > > > > > should be equivalent to a chain of 2 nodes represented below
> > if I
> > > > > > > > understand the terminology right).
> > > > > > > >
> > > > > > > > The contents of regionCounts should not change depending on
> the
> > > set
> > > > > of
> > > > > > > > keys present in regionCounts1 if we view this
> > > > > > > >
> > > > > > > > from a functional programming point of view (it's as if we
> are
> > > > > > > > carrying garbage collected objects into regionCounts), which
> > > seems
> > > > > > > > natural considering the method filter that is pervasive in
> FP.
> > > > > > > >
> > > > > > > > Here regionCounts is totally oblivious that aggregation took
> > > place
> > > > > > > > previously in regionCounts1 and that's fine (KIP-63 talks
> much
> > > > about
> > > > > > > > aggregation but I don't really care about, I care about the
> 2nd
> > > > node
> > > > > > > > and the behaviour of filter).
> > > > > > > >
> > > > > > > >
> > > > > > > > On Thu, Jun 23, 2016 at 6:13 PM, Guozhang Wang <
> > > wangg...@gmail.com
> > > > >
> > > > > > > wrote:
> > > > > > > >
> > > > > > > > > Hello Philippe,
> > > > > > > > >
> > > > > > > > > I think your question is really in two-folds:
> > > > > > > > >
> > > > > > > > > 1. What is the semantic difference between a KTable and a
> > > > KStream,
> > > > > > and
> > > > > > > > more
> > > > > > > > > specifically how should we interpret (key, null) in KTable?
> > > > > > > > >
> > > > > > > > > You can find some explanations in this documentation:
> > > > > > > > >
> > > > > > > > >
> > > > > > > >
> > > > > > >
> > > > > >
> > > > >
> > > >
> > >
> >
> http://docs.confluent.io/3.0.0/streams/concepts.html#ktable-changelog-stream
> > > > > > > > >
> > > > > > > > > Note that KTable itself is still a stream behind the scene,
> > > > > although
> > > > > > it
> > > > > > > > may
> > > > > > > > > be materialized when necessary. And specifically to your
> > > > question,
> > > > > > > (key,
> > > > > > > > > null) can be treated as a tombstone on the specified key,
> and
> > > > when
> > > > > > this
> > > > > > > > > KTable stream is materialized, it will result in a "delete"
> > on
> > > > > > > > materialized
> > > > > > > > > view.
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > 2. As for the "filter" operator, yes it will generate a
> large
> > > > > amount
> > > > > > of
> > > > > > > > > (key, null) records which indicates "delete" in the
> resulted
> > > > > KTable,
> > > > > > > and
> > > > > > > > > hence large traffic to the piped topic. But we are working
> on
> > > > > KIP-63
> > > > > > > > which
> > > > > > > > > unifies the caching mechanism in the `KTable.to` operator
> as
> > > well
> > > > > so
> > > > > > > that
> > > > > > > > > de-duping can be done in this operator and hence the
> outgoing
> > > > > traffic
> > > > > > > can
> > > > > > > > > be largely reduced:
> > > > > > > > >
> > > > > > > > >
> > > > > > > > >
> > > > > > > >
> > > > > > >
> > > > > >
> > > > >
> > > >
> > >
> >
> https://cwiki.apache.org/confluence/display/KAFKA/KIP-63:+Unify+store+and+downstream+caching+in+streams
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > Guozhang
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > On Thu, Jun 23, 2016 at 5:50 AM, Philippe Derome <
> > > > > phder...@gmail.com
> > > > > > >
> > > > > > > > > wrote:
> > > > > > > > >
> > > > > > > > > > I made a modification of latest Confluent's example
> > > > > > > > > > UserRegionLambdaExample. See relevant code at end of
> email.
> > > > > > > > > >
> > > > > > > > > > Am I correct in understanding that KTable semantics
> should
> > be
> > > > > > similar
> > > > > > > > to
> > > > > > > > > a
> > > > > > > > > > store-backed cache of a view as (per wikipedia on
> > > materialized
> > > > > > views)
> > > > > > > > or
> > > > > > > > > > similar to Oracle's materialized views and indexed views?
> > > More
> > > > > > > > > > specifically, I am looking at when a (key, null value)
> pair
> > > can
> > > > > > make
> > > > > > > it
> > > > > > > > > > into KTable on generating table from a valid KStream
> with a
> > > > false
> > > > > > > > filter.
> > > > > > > > > >
> > > > > > > > > > Here's relevant code modified from example for which I
> > > observed
> > > > > > that
> > > > > > > > all
> > > > > > > > > > keys within userRegions are sent out to topic
> LargeRegions
> > > > with a
> > > > > > > null
> > > > > > > > > > value. I would think that both regionCounts KTable and
> > topic
> > > > > > > > LargeRegions
> > > > > > > > > > should be empty so that the cached view agrees with the
> > > > intended
> > > > > > > query
> > > > > > > > (a
> > > > > > > > > > query with an intentional empty result set as the filter
> is
> > > > > > > > intentionally
> > > > > > > > > > false as 1 >= 2).
> > > > > > > > > >
> > > > > > > > > > I am not sure I understand implications properly as I am
> > new
> > > > but
> > > > > it
> > > > > > > > seems
> > > > > > > > > > possible that  a highly selective filter from a large
> > > incoming
> > > > > > stream
> > > > > > > > > would
> > > > > > > > > > result in high memory usage for regionCounts and hence
> the
> > > > stream
> > > > > > > > > > application.
> > > > > > > > > >
> > > > > > > > > > KTable<String, *String*> regionCounts = userRegions
> > > > > > > > > >     // Count by region
> > > > > > > > > >     // We do not need to specify any explicit serdes
> > because
> > > > the
> > > > > > key
> > > > > > > > > > and value types do not change
> > > > > > > > > >     .groupBy((userId, region) -> KeyValue.pair(region,
> > > region))
> > > > > > > > > >     .count("CountsByRegion")
> > > > > > > > > >     // discard any regions FOR SAKE OF EXAMPLE
> > > > > > > > > >     .filter((regionName, count) -> *1 >= 2*)
> > > > > > > > > >     .mapValues(count -> count.toString());
> > > > > > > > > >
> > > > > > > > > >
> > > > > > > > > > KStream<String, *String*> regionCountsForConsole =
> > > > > > > > > regionCounts.toStream();
> > > > > > > > > >
> > > > > > > > > > regionCountsForConsole.to(stringSerde, *stringSerde*,
> > > > > > > "LargeRegions");
> > > > > > > > > >
> > > > > > > > >
> > > > > > > > >
> > > > > > > > >
> > > > > > > > > --
> > > > > > > > > -- Guozhang
> > > > > > > > >
> > > > > > > >
> > > > > > >
> > > > > > >
> > > > > > >
> > > > > > > --
> > > > > > > -- Guozhang
> > > > > > >
> > > > > >
> > > > >
> > > > >
> > > > >
> > > > > --
> > > > > -- Guozhang
> > > > >
> > > >
> > >
> > >
> > >
> > > --
> > > -- Guozhang
> > >
> >
>
>
>
> --
> -- Guozhang
>

Reply via email to