[ https://issues.apache.org/jira/browse/KAFKA-3565?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15252352#comment-15252352 ]
Jiangjie Qin commented on KAFKA-3565: ------------------------------------- [~jkreps] Yes, I agree that "free" calls can make a difference when called millions of times. We can try to use a fixed timestamp to verify this. If that is the case theoretically we should see a bigger difference if more records are sent. That means when snappy is used 0.9 should have a bigger advantage because it sends significantly more records per sec, but the cases where 0.9 wins in my tests are all using gzip. Your batching hypothesis may still stand. In all the tests, 0.9 is sending less but bigger batches. And trunk is send more but smaller batches. In the cases that 0.9 wins, it looks the bigger batch helped. Let me run the test again and also get the records per request and compression ratio. > Producer's throughput lower with compressed data after KIP-31/32 > ---------------------------------------------------------------- > > Key: KAFKA-3565 > URL: https://issues.apache.org/jira/browse/KAFKA-3565 > Project: Kafka > Issue Type: Bug > Reporter: Ismael Juma > Priority: Critical > Fix For: 0.10.0.0 > > > Relative offsets were introduced by KIP-31 so that the broker does not have > to recompress data (this was previously required after offsets were > assigned). The implicit assumption is that reducing CPU usage required by > recompression would mean that producer throughput for compressed data would > increase. > However, this doesn't seem to be the case: > {code} > Commit: eee95228fabe1643baa016a2d49fb0a9fe2c66bd (one before KIP-31/32) > test_id: > 2016-04-15--012.kafkatest.tests.benchmark_test.Benchmark.test_producer_throughput.topic=topic-replication-factor-three.security_protocol=PLAINTEXT.acks=1.message_size=100.compression_type=snappy > status: PASS > run time: 59.030 seconds > {"records_per_sec": 519418.343653, "mb_per_sec": 49.54} > {code} > Full results: https://gist.github.com/ijuma/0afada4ff51ad6a5ac2125714d748292 > {code} > Commit: fa594c811e4e329b6e7b897bce910c6772c46c0f (KIP-31/32) > test_id: > 2016-04-15--013.kafkatest.tests.benchmark_test.Benchmark.test_producer_throughput.topic=topic-replication-factor-three.security_protocol=PLAINTEXT.acks=1.message_size=100.compression_type=snappy > status: PASS > run time: 1 minute 0.243 seconds > {"records_per_sec": 427308.818848, "mb_per_sec": 40.75} > {code} > Full results: https://gist.github.com/ijuma/e49430f0548c4de5691ad47696f5c87d > The difference for the uncompressed case is smaller (and within what one > would expect given the additional size overhead caused by the timestamp > field): > {code} > Commit: eee95228fabe1643baa016a2d49fb0a9fe2c66bd (one before KIP-31/32) > test_id: > 2016-04-15--010.kafkatest.tests.benchmark_test.Benchmark.test_producer_throughput.topic=topic-replication-factor-three.security_protocol=PLAINTEXT.acks=1.message_size=100 > status: PASS > run time: 1 minute 4.176 seconds > {"records_per_sec": 321018.17747, "mb_per_sec": 30.61} > {code} > Full results: https://gist.github.com/ijuma/5fec369d686751a2d84debae8f324d4f > {code} > Commit: fa594c811e4e329b6e7b897bce910c6772c46c0f (KIP-31/32) > test_id: > 2016-04-15--014.kafkatest.tests.benchmark_test.Benchmark.test_producer_throughput.topic=topic-replication-factor-three.security_protocol=PLAINTEXT.acks=1.message_size=100 > status: PASS > run time: 1 minute 5.079 seconds > {"records_per_sec": 291777.608696, "mb_per_sec": 27.83} > {code} > Full results: https://gist.github.com/ijuma/1d35bd831ff9931448b0294bd9b787ed -- This message was sent by Atlassian JIRA (v6.3.4#6332)