karthickthavasiraj09 created KAFKA-19238:
--------------------------------------------

             Summary: We're facing issue in Kafka while reading data from Azure 
event hubs through Azure Databricks
                 Key: KAFKA-19238
                 URL: https://issues.apache.org/jira/browse/KAFKA-19238
             Project: Kafka
          Issue Type: Test
          Components: connect, consumer, network
    Affects Versions: 3.3.1
         Environment: Production
            Reporter: karthickthavasiraj09
         Attachments: Re_ Job taking much longer time to extract data... - 
TrackingID#2504010030002895.msg

We had an issue while reading data from the Azure Event hubs through Azure 
Databricks. After working with Microsoft team they confirmed that there's an 
issue from Kafka side. I'm sharing the debug logs shared by the Microsoft team 
below,

The good job shared on March 20th, so we would not be able to download the 
backend logs _(as it's > 20 days)_

But for the bad job: 
[https://adb-2632737963103362.2.azuredatabricks.net/jobs/911028616577296/runs/939144212532710?o=2632737963103362]
 that took 49m, we see that task 143 takes 46 mins _(out of the job duration of_
_49m 30s)_

_25/04/15 14:21:44 INFO KafkaBatchReaderFactoryWithRowBytesAccumulator: 
Creating Kafka reader 
topicPartition=voyager-prod-managedsql-cus.order.orders.orderitem-0 
fromOffset=16511904 untilOffset=16658164, for query 
queryId=dd660d4d-05cc-4a8e-8f93-d202ec78fec3 
runId=af7eb711-7310-4788-85b7-0977fc0756b7 batchId=73 taskId=143 partitionId=0_
_._
_25/04/15 15:07:21 INFO KafkaDataConsumer: From Kafka 
topicPartition=voyager-prod-managedsql-cus.order.orders.orderitem-0 
groupId=spark-kafka-source-da79e0fc-8ee5-40f5-a127-7b31766b3022--1737876659-executor
 read 146260 records through 4314 polls (polled out 146265 records), taking 
2526471821132 nanos, during time span of 2736294068630 nanos._

And this task is waiting for Kafka to respond for most of the time as we can 
see from the threads:


_Executor task launch worker for task 0.0 in stage 147.0 (TID 143)_ 
_sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)_
_sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269)_
_sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:93)_
_sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked 
sun.nio.ch.EPollSelectorImpl@54f8f9b6_
_sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97)_
_kafkashaded.org.apache.kafka.common.network.Selector.select(Selector.java:874)_
_kafkashaded.org.apache.kafka.common.network.Selector.poll(Selector.java:465)_
_kafkashaded.org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:560)_
_kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:280)_
_kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:251)_
_kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:242)_
_kafkashaded.org.apache.kafka.clients.consumer.KafkaConsumer.position(KafkaConsumer.java:1759)_
_kafkashaded.org.apache.kafka.clients.consumer.KafkaConsumer.position(KafkaConsumer.java:1717)_
_org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumer.getAvailableOffsetRange(KafkaDataConsumer.scala:110)_
_org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumer.fetch(KafkaDataConsumer.scala:84)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.$anonfun$fetchData$1(KafkaDataConsumer.scala:593)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$$Lambda$4556/228899458.apply(Unknown
 Source)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.timeNanos(KafkaDataConsumer.scala:696)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.fetchData(KafkaDataConsumer.scala:593)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.fetchRecord(KafkaDataConsumer.scala:517)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.$anonfun$get$1(KafkaDataConsumer.scala:325)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$$Lambda$4491/342980175.apply(Unknown
 Source)_
_org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.runUninterruptiblyIfPossible(KafkaDataConsumer.scala:686)_
_org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.get(KafkaDataConsumer.scala:301)_
_org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.next(KafkaBatchPartitionReader.scala:106)_
_._



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to