Hi Fokko, Thanks so much for sharing. I am using version 3.2.1. Is this not supported in 3.2.1?
I do get the error with the `col` syntax: df2.writeTo(spark_table_path).using("iceberg").overwrite(col("tid") >= 2) The stack trace would look like this: --------------------------------------------------------------------------- TypeError Traceback (most recent call last) 1 from pyspark.sql.functions import col ----> 2 df2.writeTo(spark_table_path).using("iceberg").overwrite(col("tid") >= 2) ...pyspark/sql/readwriter.py in overwrite(self, condition) 1164 the output table. 1165 """ -> 1166 self._jwriter.overwrite(condition) 1167 1168 @since(3.1) ...py4j/java_gateway.py in __call__(self, *args) 1311 1312 def __call__(self, *args): -> 1313 args_command, temp_args = self._build_args(*args) 1314 1315 command = proto.CALL_COMMAND_NAME +\ ...py4j/java_gateway.py in _build_args(self, *args) 1275 def _build_args(self, *args): 1276 if self.converters is not None and len(self.converters) > 0: -> 1277 (new_args, temp_args) = self._get_args(args) 1278 else: 1279 new_args = args ...py4j/java_gateway.py in _get_args(self, args) 1262 for converter in self.gateway_client.converters: 1263 if converter.can_convert(arg): -> 1264 temp_arg = converter.convert(arg, self.gateway_client) 1265 temp_args.append(temp_arg) 1266 new_args.append(temp_arg) ...py4j/java_collections.py in convert(self, object, gateway_client) 508 ArrayList = JavaClass("java.util.ArrayList", gateway_client) 509 java_list = ArrayList() --> 510 for element in object: 511 java_list.add(element) 512 return java_list ...pyspark/sql/column.py in __iter__(self) 461 462 def __iter__(self): --> 463 raise TypeError("Column is not iterable") 464 465 # string methods TypeError: Column is not iterable Thanks! Best, Ha From: Fokko Driesprong <fo...@apache.org> Sent: Friday, June 28, 2024 3:00 PM To: dev@iceberg.apache.org Subject: Re: Iceberg - PySpark overwrite with a condition Hey Ha, What version of Spark are you using? Can you share the whole stack trace? I tried to reproduce it locally and it worked fine: pyspark --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.5.2\ --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \ --conf spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog \ --conf spark.sql.catalog.spark_catalog.type=hive \ --conf spark.sql.catalog.local=org.apache.iceberg.spark.SparkCatalog \ --conf spark.sql.catalog.local.type=hadoop \ --conf spark.sql.catalog.local.warehouse=$PWD/warehouse \ --conf spark.sql.defaultCatalog=local Python 3.9.6 (default, Feb 3 2024, 15:58:27) [Clang 15.0.0 (clang-1500.3.9.4)] on darwin Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /__ / .__/\_,_/_/ /_/\_\ version 3.5.1 /_/ Using Python version 3.9.6 (default, Feb 3 2024 15:58:27) Spark context Web UI available at http://secure-web.cisco.com/1AplqucVgy6zNuU83jHXzTaAD7IXV0U88upo3R0ciGSYtjHwLm9Bdtd78mSwe_bPBtysvIxaZmASm2vknr_GVtMRAgGMde99uUqvLdu1fTxVt8ptznXMo4blxxjNIVJA4-7Cm59oYdA7m0fmKvhYtYy59vrlM4tAGHgE-_oq5HLnogBWQpe1hLalhCvXA78yHcTAYLxNPPka3mPFVSsQhJ5qX908IWNbeGG17g9lUKML0NumrAjj6Q8Izqs-z8MPx/http%3A%2F%2F192.168.1.10%3A4040 Spark context available as 'sc' (master = local[*], app id = local-1719599873923). SparkSession available as 'spark'. >>> table_name = "local.test.person_with_age" >>> >>> spark.sql(f""" ... CREATE TABLE {table_name} ( ... name string, ... age int ... ) ... USING iceberg ... PARTITIONED BY (age); ... """).show() ++ || ++ ++ >>> spark.table(table_name).show() +----+---+ |name|age| +----+---+ +----+---+ >>> persons = [('Fokko', 1), ('Gurbe', 2), ('Pieter', 2)] >>> df = spark.createDataFrame(persons, ['name', 'age']) >>> df.writeTo(table_name).append() >>> spark.table(table_name).show() +------+---+ | name|age| +------+---+ | Fokko| 1| | Gurbe| 2| |Pieter| 2| +------+---+ >>> new_person = [('Rho', 2)] >>> df_overwrite = spark.createDataFrame(new_person, ['name', 'age']) >>> from pyspark.sql.functions import col >>> df_overwrite.writeTo(table_name).overwrite(col("age") >= 2) >>> spark.table(table_name).show() +-----+---+ | name|age| +-----+---+ | Rho| 2| |Fokko| 1| +-----+---+ The syntax with the col is the way to go. I hope this helps and let me know if this doesn't work for you. Kind regards, Fokko Op vr 28 jun 2024 om 18:09 schreef Ha Cao <ha....@twosigma.com<mailto:ha....@twosigma.com>>: Hi Ajantha, Thanks for replying! The example, however, is in Java. I figure that that syntax probably only works for Java and Scala. I have tried similarly for PySpark but still got `Column is not iterable` with: df.writeTo(spark_table_path).using("iceberg").overwrite(col("time") > target_timestamp) For this, I get `Column object is not callable`: df.writeTo(spark_table_path).using("iceberg").overwrite(col("time").less(target_timestamp)) The only example I can find in the PySpark codebase is https://github.com/apache/spark/blob/master/python/pyspark/sql/tests/test_readwriter.py#L251 but even with this, it throws `Column is not iterable`. I cannot find any other test case that tests `overwrite()` as a method. Thank you! Best, Ha From: Ajantha Bhat <ajanthab...@gmail.com<mailto:ajanthab...@gmail.com>> Sent: Friday, June 28, 2024 3:52 AM To: dev@iceberg.apache.org<mailto:dev@iceberg.apache.org> Subject: Re: Iceberg - PySpark overwrite with a condition Hi, Please refer this doc: https://iceberg.apache.org/docs/nightly/spark-writes/#overwriting-data We do have some test cases for the same: https://github.com/apache/iceberg/blob/91fbcaa62c25308aa815557dd2c0041f75530705/spark/v3.5/spark/src/test/java/org/apache/iceberg/spark/sql/PartitionedWritesTestBase.java#L153 - Ajantha On Fri, Jun 28, 2024 at 1:00 AM Ha Cao <ha....@twosigma.com<mailto:ha....@twosigma.com>> wrote: Hello, I am experimenting with PySpark’s DataFrameWriterV2 overwrite()<https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameWriterV2.overwrite.html> to an Iceberg table with existing data in a target partition. My goal is that instead of overwriting the entire partition, it will only overwrite specific rows that match the condition. However, I can’t get it to work with any syntax and I keep getting “Column is not iterable”. I have tried: df.writeTo(spark_table_path).using("iceberg").overwrite(df.tid) df.writeTo(spark_table_path).using("iceberg").overwrite(df.tid.isin(1)) df.writeTo(spark_table_path).using("iceberg").overwrite(df.tid >= 1) and all of these syntaxes fail with “Column is not iterable”. What is the correct syntax for this? I also think that there is a possibility that Iceberg-PySpark integration doesn’t support overwrite, but I don’t know how to confirm this. Thank you so much! Best, Ha