Mostafa Mokhtar created HIVE-8765: ------------------------------------- Summary: TPC-DS Q21 : Incorrect join order makes query run slower (Not scaling selectivity by NDV) Key: HIVE-8765 URL: https://issues.apache.org/jira/browse/HIVE-8765 Project: Hive Issue Type: Bug Components: CBO Affects Versions: 0.14.0 Reporter: Mostafa Mokhtar Assignee: Laljo John Pullokkaran Fix For: 0.15.0
CBO joins with date_dim first instead of item where item is the more selective join. Query {code} select * from(select w_warehouse_name ,i_item_id ,sum(case when (cast(d_date as date) < cast ('1998-04-08' as date)) then inv_quantity_on_hand else 0 end) as inv_before ,sum(case when (cast(d_date as date) >= cast ('1998-04-08' as date)) then inv_quantity_on_hand else 0 end) as inv_after from inventory ,warehouse ,item ,date_dim where i_current_price between 0.99 and 1.49 and item.i_item_sk = inventory.inv_item_sk and inventory.inv_warehouse_sk = warehouse.w_warehouse_sk and inventory.inv_date_sk = date_dim.d_date_sk and d_date between '1998-03-09' and '1998-05-07' group by w_warehouse_name, i_item_id) x where (case when inv_before > 0 then inv_after / inv_before else null end) between 2.0/3.0 and 3.0/2.0 order by w_warehouse_name ,i_item_id limit 100 {code} Logical Plan {code} 2014-11-06 16:58:32,041 DEBUG [main]: parse.SemanticAnalyzer (SemanticAnalyzer.java:apply(12631)) - Plan After Join Reordering: HiveSortRel(fetch=[100]): rowcount = 1.0, cumulative cost = {1.627879384609158E9 rows, 2.0 cpu, 0.0 io}, id = 12521 HiveSortRel(sort0=[$0], sort1=[$1], dir0=[ASC], dir1=[ASC]): rowcount = 1.0, cumulative cost = {1.627879368609158E9 rows, 1.0 cpu, 0.0 io}, id = 12519 HiveProjectRel(w_warehouse_name=[$0], i_item_id=[$1], inv_before=[$2], inv_after=[$3]): rowcount = 1.0, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12517 HiveFilterRel(condition=[between(false, when(>($2, 0), /(CAST($3):DOUBLE, CAST($2):DOUBLE), null), /(2E0, 3E0), /(3E0, 2E0))]): rowcount = 1.0, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12515 HiveAggregateRel(group=[{0, 1}], agg#0=[sum($2)], agg#1=[sum($3)]): rowcount = 1.7688372892644288, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12513 HiveProjectRel($f0=[$5], $f1=[$7], $f2=[when(<(CAST($10):DATE, CAST('1998-04-08'):DATE), $2, 0)], $f3=[when(>=(CAST($10):DATE, CAST('1998-04-08'):DATE), $2, 0)]): rowcount = 1.8477987480495097, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12511 HiveProjectRel(inv_item_sk=[$2], inv_warehouse_sk=[$3], inv_quantity_on_hand=[$4], inv_date_sk=[$5], w_warehouse_sk=[$0], w_warehouse_name=[$1], i_item_sk=[$8], i_item_id=[$9], i_current_price=[$10], d_date_sk=[$6], d_date=[$7]): rowcount = 1.8477987480495097, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12577 HiveJoinRel(condition=[=($3, $0)], joinType=[inner]): rowcount = 1.8477987480495097, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12575 HiveProjectRel(w_warehouse_sk=[$0], w_warehouse_name=[$2]): rowcount = 27.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12463 HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.warehouse]]): rowcount = 27.0, cumulative cost = {0}, id = 12287 HiveJoinRel(condition=[=($6, $0)], joinType=[inner]): rowcount = 1.8477987480495097, cumulative cost = {1.6278793237613592E9 rows, 0.0 cpu, 0.0 io}, id = 12573 HiveJoinRel(condition=[=($3, $4)], joinType=[inner]): rowcount = 22284.45290147709, cumulative cost = {1.627857001E9 rows, 0.0 cpu, 0.0 io}, id = 12534 HiveProjectRel(inv_item_sk=[$0], inv_warehouse_sk=[$1], inv_quantity_on_hand=[$2], inv_date_sk=[$3]): rowcount = 1.627857E9, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12460 HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.inventory]]): rowcount = 1.627857E9, cumulative cost = {0}, id = 12284 HiveProjectRel(d_date_sk=[$0], d_date=[$2]): rowcount = 1.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12507 HiveFilterRel(condition=[between(false, $2, '1998-03-09', '1998-05-07')]): rowcount = 1.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12505 HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.date_dim]]): rowcount = 73049.0, cumulative cost = {0}, id = 12286 HiveProjectRel(i_item_sk=[$0], i_item_id=[$1], i_current_price=[$5]): rowcount = 38.308457711442784, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12501 HiveFilterRel(condition=[between(false, $5, 9.8999999999999999111E-1, 1.4899999999999999911E0)]): rowcount = 38.308457711442784, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12499 HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.item]]): rowcount = 462000.0, cumulative cost = {0}, id = 12285 {code} Physical plan {code} STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-1 Tez Edges: Map 3 <- Map 1 (BROADCAST_EDGE), Map 2 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE) Reducer 4 <- Map 3 (SIMPLE_EDGE) Reducer 5 <- Reducer 4 (SIMPLE_EDGE) DagName: mmokhtar_20141104001212_4ebd83eb-0b1a-4375-aa32-b6455db0b8f9:1 Vertices: Map 1 Map Operator Tree: TableScan alias: warehouse filterExpr: w_warehouse_sk is not null (type: boolean) Statistics: Num rows: 27 Data size: 27802 Basic stats: COMPLETE Column stats: COMPLETE Filter Operator predicate: w_warehouse_sk is not null (type: boolean) Statistics: Num rows: 27 Data size: 2808 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: w_warehouse_sk (type: int), w_warehouse_name (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 27 Data size: 2808 Basic stats: COMPLETE Column stats: COMPLETE Reduce Output Operator key expressions: _col0 (type: int) sort order: + Map-reduce partition columns: _col0 (type: int) Statistics: Num rows: 27 Data size: 2808 Basic stats: COMPLETE Column stats: COMPLETE value expressions: _col1 (type: string) Execution mode: vectorized Map 2 Map Operator Tree: TableScan alias: item filterExpr: (i_current_price BETWEEN 0.99 AND 1.49 and i_item_sk is not null) (type: boolean) Statistics: Num rows: 462000 Data size: 663862160 Basic stats: COMPLETE Column stats: COMPLETE Filter Operator predicate: (i_current_price BETWEEN 0.99 AND 1.49 and i_item_sk is not null) (type: boolean) Statistics: Num rows: 231000 Data size: 24945664 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: i_item_sk (type: int), i_item_id (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 231000 Data size: 24024000 Basic stats: COMPLETE Column stats: COMPLETE Reduce Output Operator key expressions: _col0 (type: int) sort order: + Map-reduce partition columns: _col0 (type: int) Statistics: Num rows: 231000 Data size: 24024000 Basic stats: COMPLETE Column stats: COMPLETE value expressions: _col1 (type: string) Execution mode: vectorized Map 3 Map Operator Tree: TableScan alias: inventory filterExpr: (inv_item_sk is not null and inv_warehouse_sk is not null) (type: boolean) Statistics: Num rows: 1627857000 Data size: 19208695084 Basic stats: COMPLETE Column stats: COMPLETE Filter Operator predicate: (inv_item_sk is not null and inv_warehouse_sk is not null) (type: boolean) Statistics: Num rows: 1627857000 Data size: 25720123084 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: inv_item_sk (type: int), inv_warehouse_sk (type: int), inv_quantity_on_hand (type: int), inv_date_sk (type: int) outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 1627857000 Data size: 25720123084 Basic stats: COMPLETE Column stats: COMPLETE Map Join Operator condition map: Inner Join 0 to 1 condition expressions: 0 {_col0} {_col1} {_col2} 1 {_col1} keys: 0 _col3 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col1, _col2, _col5 input vertices: 1 Map 6 Statistics: Num rows: 1820114157 Data size: 185651644014 Basic stats: COMPLETE Column stats: COMPLETE Map Join Operator condition map: Inner Join 0 to 1 condition expressions: 0 {_col1} {_col2} {_col5} 1 {_col1} keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col1, _col2, _col5, _col7 input vertices: 1 Map 2 Statistics: Num rows: 1913285356 Data size: 378830500488 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: _col1 (type: int), _col2 (type: int), _col5 (type: string), _col7 (type: string) outputColumnNames: _col1, _col2, _col5, _col7 Statistics: Num rows: 1913285356 Data size: 378830500488 Basic stats: COMPLETE Column stats: COMPLETE Map Join Operator condition map: Inner Join 0 to 1 condition expressions: 0 {_col1} 1 {_col2} {_col5} {_col7} keys: 0 _col0 (type: int) 1 _col1 (type: int) outputColumnNames: _col1, _col4, _col7, _col9 input vertices: 0 Map 1 Statistics: Num rows: 2348122936 Data size: 699740634928 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: _col1 (type: string), _col9 (type: string), CASE WHEN ((CAST( _col7 AS DATE) < 1998-04-08)) THEN (_col4) ELSE (0) END (type: int), CASE WHEN ((CAST( _col7 AS DATE) >= 1998-04-08)) THEN (_col4) ELSE (0) END (type: int) outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 2348122936 Data size: 699740634928 Basic stats: COMPLETE Column stats: COMPLETE Group By Operator aggregations: sum(_col2), sum(_col3) keys: _col0 (type: string), _col1 (type: string) mode: hash outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 1174061468 Data size: 253597277088 Basic stats: COMPLETE Column stats: COMPLETE Reduce Output Operator key expressions: _col0 (type: string), _col1 (type: string) sort order: ++ Map-reduce partition columns: _col0 (type: string), _col1 (type: string) Statistics: Num rows: 1174061468 Data size: 253597277088 Basic stats: COMPLETE Column stats: COMPLETE value expressions: _col2 (type: bigint), _col3 (type: bigint) Map 6 Map Operator Tree: TableScan alias: date_dim filterExpr: (d_date BETWEEN '1998-03-09' AND '1998-05-07' and d_date_sk is not null) (type: boolean) Statistics: Num rows: 73049 Data size: 81741831 Basic stats: COMPLETE Column stats: COMPLETE Filter Operator predicate: (d_date BETWEEN '1998-03-09' AND '1998-05-07' and d_date_sk is not null) (type: boolean) Statistics: Num rows: 36524 Data size: 3579352 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: d_date_sk (type: int), d_date (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 36524 Data size: 3579352 Basic stats: COMPLETE Column stats: COMPLETE Reduce Output Operator key expressions: _col0 (type: int) sort order: + Map-reduce partition columns: _col0 (type: int) Statistics: Num rows: 36524 Data size: 3579352 Basic stats: COMPLETE Column stats: COMPLETE value expressions: _col1 (type: string) Select Operator expressions: _col0 (type: int) outputColumnNames: _col0 Statistics: Num rows: 36524 Data size: 3579352 Basic stats: COMPLETE Column stats: COMPLETE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 36524 Data size: 3579352 Basic stats: COMPLETE Column stats: COMPLETE Dynamic Partitioning Event Operator Target Input: inventory Partition key expr: inv_date_sk Statistics: Num rows: 36524 Data size: 3579352 Basic stats: COMPLETE Column stats: COMPLETE Target column: inv_date_sk Target Vertex: Map 3 Execution mode: vectorized Reducer 4 Reduce Operator Tree: Group By Operator aggregations: sum(VALUE._col0), sum(VALUE._col1) keys: KEY._col0 (type: string), KEY._col1 (type: string) mode: mergepartial outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 3263127 Data size: 704835432 Basic stats: COMPLETE Column stats: COMPLETE Filter Operator predicate: CASE WHEN ((_col2 > 0)) THEN ((UDFToDouble(_col3) / UDFToDouble(_col2))) ELSE (null) END BETWEEN 0.6666666666666666 AND 1.5 (type: boolean) Statistics: Num rows: 1631563 Data size: 352417608 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: _col0 (type: string), _col1 (type: string), _col2 (type: bigint), _col3 (type: bigint) outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 1631563 Data size: 352417608 Basic stats: COMPLETE Column stats: COMPLETE Reduce Output Operator key expressions: _col0 (type: string), _col1 (type: string) sort order: ++ Statistics: Num rows: 1631563 Data size: 352417608 Basic stats: COMPLETE Column stats: COMPLETE TopN Hash Memory Usage: 0.04 value expressions: _col2 (type: bigint), _col3 (type: bigint) Reducer 5 Reduce Operator Tree: Select Operator expressions: KEY.reducesinkkey0 (type: string), KEY.reducesinkkey1 (type: string), VALUE._col0 (type: bigint), VALUE._col1 (type: bigint) outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 1631563 Data size: 352417608 Basic stats: COMPLETE Column stats: COMPLETE Limit Number of rows: 100 Statistics: Num rows: 100 Data size: 21600 Basic stats: COMPLETE Column stats: COMPLETE File Output Operator compressed: false Statistics: Num rows: 100 Data size: 21600 Basic stats: COMPLETE Column stats: COMPLETE table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Execution mode: vectorized Stage: Stage-0 Fetch Operator limit: 100 Processor Tree: ListSink Time taken: 6.142 seconds, Fetched: 205 row(s) {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)