[ https://issues.apache.org/jira/browse/HIVE-7914?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14171702#comment-14171702 ]
Ashutosh Chauhan commented on HIVE-7914: ---------------------------------------- +1 > Simplify join predicates for CBO to avoid cross products > -------------------------------------------------------- > > Key: HIVE-7914 > URL: https://issues.apache.org/jira/browse/HIVE-7914 > Project: Hive > Issue Type: Bug > Components: CBO > Affects Versions: 0.13.1 > Reporter: Mostafa Mokhtar > Assignee: Laljo John Pullokkaran > Fix For: 0.14.0 > > Attachments: HIVE-7914.patch > > > Simplify join predicates for disjunctive predicates to avoid cross products. > For TPC-DS query 13 we generate a cross products. > The join predicate on (store_sales x customer_demographics) , (store_sales x > household_demographics) and (store_sales x customer_address) can be pull up > to avoid the cross products > {code} > select avg(ss_quantity) > ,avg(ss_ext_sales_price) > ,avg(ss_ext_wholesale_cost) > ,sum(ss_ext_wholesale_cost) > from store_sales > ,store > ,customer_demographics > ,household_demographics > ,customer_address > ,date_dim > where store.s_store_sk = store_sales.ss_store_sk > and store_sales.ss_sold_date_sk = date_dim.d_date_sk and date_dim.d_year = > 2001 > and((store_sales.ss_hdemo_sk=household_demographics.hd_demo_sk > and customer_demographics.cd_demo_sk = store_sales.ss_cdemo_sk > and customer_demographics.cd_marital_status = 'M' > and customer_demographics.cd_education_status = '4 yr Degree' > and store_sales.ss_sales_price between 100.00 and 150.00 > and household_demographics.hd_dep_count = 3 > )or > (store_sales.ss_hdemo_sk=household_demographics.hd_demo_sk > and customer_demographics.cd_demo_sk = store_sales.ss_cdemo_sk > and customer_demographics.cd_marital_status = 'D' > and customer_demographics.cd_education_status = 'Primary' > and store_sales.ss_sales_price between 50.00 and 100.00 > and household_demographics.hd_dep_count = 1 > ) or > (store_sales.ss_hdemo_sk=household_demographics.hd_demo_sk > and customer_demographics.cd_demo_sk = ss_cdemo_sk > and customer_demographics.cd_marital_status = 'U' > and customer_demographics.cd_education_status = 'Advanced Degree' > and store_sales.ss_sales_price between 150.00 and 200.00 > and household_demographics.hd_dep_count = 1 > )) > and((store_sales.ss_addr_sk = customer_address.ca_address_sk > and customer_address.ca_country = 'United States' > and customer_address.ca_state in ('KY', 'GA', 'NM') > and store_sales.ss_net_profit between 100 and 200 > ) or > (store_sales.ss_addr_sk = customer_address.ca_address_sk > and customer_address.ca_country = 'United States' > and customer_address.ca_state in ('MT', 'OR', 'IN') > and store_sales.ss_net_profit between 150 and 300 > ) or > (store_sales.ss_addr_sk = customer_address.ca_address_sk > and customer_address.ca_country = 'United States' > and customer_address.ca_state in ('WI', 'MO', 'WV') > and store_sales.ss_net_profit between 50 and 250 > )) > ; > {code} > This is the plan currently generated without any predicate simplification > {code} > Warning: Map Join MAPJOIN[59][bigTable=?] in task 'Map 8' is a cross product > Warning: Map Join MAPJOIN[58][bigTable=?] in task 'Map 8' is a cross product > Warning: Shuffle Join JOIN[29][tables = [$hdt$_5, $hdt$_6]] in Stage 'Reducer > 2' is a cross product > OK > STAGE DEPENDENCIES: > Stage-1 is a root stage > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-1 > Tez > Edges: > Map 7 <- Map 8 (BROADCAST_EDGE) > Map 8 <- Map 5 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE) > Reducer 2 <- Map 1 (SIMPLE_EDGE), Map 4 (BROADCAST_EDGE), Map 7 > (SIMPLE_EDGE) > Reducer 3 <- Reducer 2 (SIMPLE_EDGE) > DagName: mmokhtar_20140828155050_7059c24b-501b-4683-86c0-4f3c023f0b0e:1 > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: customer_address > Statistics: Num rows: 40000000 Data size: 40595195284 Basic > stats: COMPLETE Column stats: NONE > Select Operator > expressions: ca_address_sk (type: int), ca_state (type: > string), ca_country (type: string) > outputColumnNames: _col0, _col1, _col2 > Statistics: Num rows: 40000000 Data size: 40595195284 > Basic stats: COMPLETE Column stats: NONE > Reduce Output Operator > sort order: > Statistics: Num rows: 40000000 Data size: 40595195284 > Basic stats: COMPLETE Column stats: NONE > value expressions: _col0 (type: int), _col1 (type: > string), _col2 (type: string) > Execution mode: vectorized > Map 4 > Map Operator Tree: > TableScan > alias: date_dim > filterExpr: ((d_year = 2001) and d_date_sk is not null) > (type: boolean) > Statistics: Num rows: 73049 Data size: 81741831 Basic > stats: COMPLETE Column stats: NONE > Filter Operator > predicate: ((d_year = 2001) and d_date_sk is not null) > (type: boolean) > Statistics: Num rows: 18262 Data size: 20435178 Basic > stats: COMPLETE Column stats: NONE > Select Operator > expressions: d_date_sk (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 18262 Data size: 20435178 Basic > stats: COMPLETE Column stats: NONE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 18262 Data size: 20435178 Basic > stats: COMPLETE Column stats: NONE > Execution mode: vectorized > Map 5 > Map Operator Tree: > TableScan > alias: household_demographics > Statistics: Num rows: 7200 Data size: 770400 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: hd_demo_sk (type: int), hd_dep_count (type: > int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 7200 Data size: 770400 Basic stats: > COMPLETE Column stats: NONE > Reduce Output Operator > sort order: > Statistics: Num rows: 7200 Data size: 770400 Basic > stats: COMPLETE Column stats: NONE > value expressions: _col0 (type: int), _col1 (type: int) > Execution mode: vectorized > Map 6 > Map Operator Tree: > TableScan > alias: store > filterExpr: (true and s_store_sk is not null) (type: > boolean) > Statistics: Num rows: 1704 Data size: 3256276 Basic stats: > COMPLETE Column stats: NONE > Filter Operator > predicate: s_store_sk is not null (type: boolean) > Statistics: Num rows: 852 Data size: 1628138 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: s_store_sk (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 852 Data size: 1628138 Basic > stats: COMPLETE Column stats: NONE > Reduce Output Operator > sort order: > Statistics: Num rows: 852 Data size: 1628138 Basic > stats: COMPLETE Column stats: NONE > value expressions: _col0 (type: int) > Execution mode: vectorized > Map 7 > Map Operator Tree: > TableScan > alias: store_sales > filterExpr: (ss_store_sk is not null and ss_sold_date_sk is > not null) (type: boolean) > Statistics: Num rows: 82510879939 Data size: 7203833257964 > Basic stats: COMPLETE Column stats: NONE > Filter Operator > predicate: (ss_store_sk is not null and ss_sold_date_sk > is not null) (type: boolean) > Statistics: Num rows: 20627719985 Data size: > 1800958314512 Basic stats: COMPLETE Column stats: NONE > Select Operator > expressions: ss_sold_date_sk (type: int), ss_cdemo_sk > (type: int), ss_hdemo_sk (type: int), ss_addr_sk (type: int), ss_store_sk > (type: int), ss_quantity (type: int), ss_sales_price (type: float), > ss_ext_sales_price (type: float), ss_ext_wholesale_cost (type: float), > ss_net_profit (type: float) > outputColumnNames: _col0, _col1, _col2, _col3, _col4, > _col5, _col6, _col7, _col8, _col9 > Statistics: Num rows: 20627719985 Data size: > 1800958314512 Basic stats: COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {_col0} {_col1} {_col2} {_col4} {_col5} > 1 {_col0} {_col1} {_col2} {_col3} {_col5} {_col6} > {_col7} {_col8} {_col9} > keys: > 0 _col3 (type: int) > 1 _col4 (type: int) > outputColumnNames: _col0, _col1, _col2, _col4, _col5, > _col6, _col7, _col8, _col9, _col11, _col12, _col13, _col14, _col15 > input vertices: > 0 Map 8 > Statistics: Num rows: 22690492416 Data size: > 1981054320640 Basic stats: COMPLETE Column stats: NONE > Filter Operator > predicate: (((_col8 = _col4) and ((_col0 = _col7) > and ((_col1 = 'M') and ((_col2 = '4 yr Degree') and (_col12 BETWEEN 100 AND > 150 and (_col5 = 3)))))) or (((_col8 = _col4) and ((_col0 = _col7) and > ((_col1 = 'D') and ((_col2 = 'Primary') and (_col12 BETWEEN 50 AND 100 and > (_col5 = 1)))))) or ((_col8 = _col4) and ((_col0 = _col7) and ((_col1 = 'U') > and ((_col2 = 'Advanced Degree') and (_col12 BETWEEN 150 AND 200 and (_col5 = > 1)))))))) (type: boolean) > Statistics: Num rows: 1063616832 Data size: > 92861921280 Basic stats: COMPLETE Column stats: NONE > Select Operator > expressions: _col6 (type: int), _col9 (type: > int), _col11 (type: int), _col13 (type: float), _col14 (type: float), _col15 > (type: float) > outputColumnNames: _col0, _col3, _col5, _col7, > _col8, _col9 > Statistics: Num rows: 1063616832 Data size: > 92861921280 Basic stats: COMPLETE Column stats: NONE > Reduce Output Operator > sort order: > Statistics: Num rows: 1063616832 Data size: > 92861921280 Basic stats: COMPLETE Column stats: NONE > value expressions: _col0 (type: int), _col3 > (type: int), _col5 (type: int), _col7 (type: float), _col8 (type: float), > _col9 (type: float) > Execution mode: vectorized > Map 8 > Map Operator Tree: > TableScan > alias: customer_demographics > Statistics: Num rows: 1920800 Data size: 718379200 Basic > stats: COMPLETE Column stats: NONE > Select Operator > expressions: cd_demo_sk (type: int), cd_marital_status > (type: string), cd_education_status (type: string) > outputColumnNames: _col0, _col1, _col2 > Statistics: Num rows: 1920800 Data size: 718379200 Basic > stats: COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {_col0} {_col1} {_col2} > 1 {_col0} > keys: > 0 > 1 > outputColumnNames: _col0, _col1, _col2, _col3 > input vertices: > 1 Map 6 > Statistics: Num rows: 2112880 Data size: 790217152 > Basic stats: COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {_col0} {_col1} {_col2} {_col3} > 1 {_col0} {_col1} > keys: > 0 > 1 > outputColumnNames: _col0, _col1, _col2, _col3, _col4, > _col5 > input vertices: > 1 Map 5 > Statistics: Num rows: 2324168 Data size: 869238912 > Basic stats: COMPLETE Column stats: NONE > Reduce Output Operator > key expressions: _col3 (type: int) > sort order: + > Map-reduce partition columns: _col3 (type: int) > Statistics: Num rows: 2324168 Data size: 869238912 > Basic stats: COMPLETE Column stats: NONE > value expressions: _col0 (type: int), _col1 (type: > string), _col2 (type: string), _col4 (type: int), _col5 (type: int) > Execution mode: vectorized > Reducer 2 > Reduce Operator Tree: > Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {VALUE._col0} {VALUE._col3} {VALUE._col5} {VALUE._col7} > {VALUE._col8} {VALUE._col9} > 1 {VALUE._col0} {VALUE._col1} {VALUE._col2} > outputColumnNames: _col0, _col3, _col5, _col7, _col8, _col9, > _col16, _col17, _col18 > Statistics: Num rows: 1169978496 Data size: 102148120576 > Basic stats: COMPLETE Column stats: NONE > Filter Operator > predicate: (((_col3 = _col16) and ((_col18 = 'United > States') and ((_col17) IN ('KY', 'GA', 'NM') and _col9 BETWEEN 100 AND 200))) > or (((_col3 = _col16) and ((_col18 = 'United States') and ((_col17) IN ('MT', > 'OR', 'IN') and _col9 BETWEEN 150 AND 300))) or ((_col3 = _col16) and > ((_col18 = 'United States') and ((_col17) IN ('WI', 'MO', 'WV') and _col9 > BETWEEN 50 AND 250))))) (type: boolean) > Statistics: Num rows: 219370968 Data size: 19152772608 > Basic stats: COMPLETE Column stats: NONE > Select Operator > expressions: _col0 (type: int), _col5 (type: int), _col7 > (type: float), _col8 (type: float) > outputColumnNames: _col0, _col5, _col7, _col8 > Statistics: Num rows: 219370968 Data size: 19152772608 > Basic stats: COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {_col5} {_col7} {_col8} > 1 > keys: > 0 _col0 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col5, _col7, _col8 > input vertices: > 1 Map 4 > Statistics: Num rows: 241308080 Data size: 21068050432 > Basic stats: COMPLETE Column stats: NONE > Select Operator > expressions: _col5 (type: int), _col7 (type: float), > _col8 (type: float) > outputColumnNames: _col0, _col1, _col2 > Statistics: Num rows: 241308080 Data size: > 21068050432 Basic stats: COMPLETE Column stats: NONE > Group By Operator > aggregations: avg(_col0), avg(_col1), avg(_col2), > sum(_col2) > mode: hash > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1 Data size: 8 Basic stats: > COMPLETE Column stats: NONE > Reduce Output Operator > sort order: > Statistics: Num rows: 1 Data size: 8 Basic stats: > COMPLETE Column stats: NONE > value expressions: _col0 (type: > struct<count:bigint,sum:double,input:int>), _col1 (type: > struct<count:bigint,sum:double,input:float>), _col2 (type: > struct<count:bigint,sum:double,input:float>), _col3 (type: double) > Reducer 3 > Reduce Operator Tree: > Group By Operator > aggregations: avg(VALUE._col0), avg(VALUE._col1), > avg(VALUE._col2), sum(VALUE._col3) > mode: mergepartial > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1 Data size: 32 Basic stats: COMPLETE > Column stats: NONE > Select Operator > expressions: _col0 (type: double), _col1 (type: double), > _col2 (type: double), _col3 (type: double) > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1 Data size: 32 Basic stats: COMPLETE > Column stats: NONE > File Output Operator > compressed: false > Statistics: Num rows: 1 Data size: 32 Basic stats: > COMPLETE Column stats: NONE > table: > input format: org.apache.hadoop.mapred.TextInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Stage: Stage-0 > Fetch Operator > limit: -1 > Processor Tree: > ListSink > Time taken: 7.681 seconds, Fetched: 227 row(s) > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)