[ https://issues.apache.org/jira/browse/HIVE-8315?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14163650#comment-14163650 ]
Vikram Dixit K commented on HIVE-8315: -------------------------------------- +1 for 0.14 > CBO : Negate condition underestimates selectivity which results in an > in-efficient plan > --------------------------------------------------------------------------------------- > > Key: HIVE-8315 > URL: https://issues.apache.org/jira/browse/HIVE-8315 > Project: Hive > Issue Type: Bug > Components: CBO > Affects Versions: 0.14.0 > Reporter: Mostafa Mokhtar > Assignee: Harish Butani > Fix For: 0.15.0 > > Attachments: HIVE-8315.1.patch > > > For TPC-DS Q64 the predicate cd1.cd_marital_status <> cd2.cd_marital_status > under estimate the join selectivity by a huge margin and results in > in-efficient join order. > This is a subset of the logical plan showing that item was joined very last > {code} > HiveJoinRel(condition=[=($0, $37)], > joinType=[inner]): rowcount = 1.0, cumulative cost = {6.386017602518958E8 > rows, 0.0 cpu, 0.0 io}, id = 3790 > HiveJoinRel(condition=[=($0, $33)], > joinType=[inner]): rowcount = 1.0, cumulative cost = {6.386017582518958E8 > rows, 0.0 cpu, 0.0 io}, id = 3067 > HiveFilterRel(condition=[<>($30, $32)]): > rowcount = 1.8252236387887635, cumulative cost = {6.386017554266721E8 rows, > 0.0 cpu, 0.0 io}, id = 1153 > HiveProjectRel(ss_item_sk=[$2], > ss_customer_sk=[$3], ss_cdemo_sk=[$4], ss_hdemo_sk=[$5], ss_addr_sk=[$6], > ss_store_sk=[$7], ss_promo_sk=[$8], ss_ticket_number=[$9], > ss_wholesale_cost=[$10], ss_list_price=[$11], ss_coupon_amt=[$12], > ss_sold_date_sk=[$13], sr_item_sk=[$0], sr_ticket_number=[$1], > c_customer_sk=[$23], c_current_cdemo_sk=[$24], c_current_hdemo_sk=[$25], > c_current_addr_sk=[$26], c_first_shipto_date_sk=[$27], > c_first_sales_date_sk=[$28], d_date_sk=[$14], d_year=[$15], d_date_sk0=[$29], > d_year0=[$30], d_date_sk1=[$31], d_year1=[$32], s_store_sk=[$18], > s_store_name=[$19], s_zip=[$20], cd_demo_sk=[$16], cd_marital_status=[$17], > cd_demo_sk0=[$21], cd_marital_status0=[$22]): rowcount = > 3.6246005783468924E7, cumulative cost = {6.386017554266721E8 rows, 0.0 cpu, > 0.0 io}, id = 2312 > HiveJoinRel(condition=[AND(=($2, $0), > =($9, $1))], joinType=[inner]): rowcount = 3.6246005783468924E7, cumulative > cost = {6.386017554266721E8 rows, 0.0 cpu, 0.0 io}, id = 2310 > HiveProjectRel(sr_item_sk=[$1], > sr_ticket_number=[$8]): rowcount = 5.5578005E7, cumulative cost = {0.0 rows, > 0.0 cpu, 0.0 io}, id = 912 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200_orig.store_returns]]): > rowcount = 5.5578005E7, cumulative cost = {0}, id = 62 > HiveJoinRel(condition=[=($1, $21)], > joinType=[inner]): rowcount = 1.2950939439433252E7, cumulative cost = > {5.700728109872389E8 rows, 0.0 cpu, 0.0 io}, id = 2308 > HiveJoinRel(condition=[=($5, > $16)], joinType=[inner]): rowcount = 5491530.921341597, cumulative cost = > {5.629812800658973E8 rows, 0.0 cpu, 0.0 io}, id = 2301 > HiveJoinRel(condition=[=($2, > $14)], joinType=[inner]): rowcount = 5491530.921341597, cumulative cost = > {5.574895371445558E8 rows, 0.0 cpu, 0.0 io}, id = 2299 > HiveJoinRel(condition=[=($11, > $12)], joinType=[inner]): rowcount = 5491530.921341597, cumulative cost = > {5.500772062232143E8 rows, 0.0 cpu, 0.0 io}, id = 1898 > > HiveProjectRel(ss_item_sk=[$1], ss_customer_sk=[$2], ss_cdemo_sk=[$3], > ss_hdemo_sk=[$4], ss_addr_sk=[$5], ss_store_sk=[$6], ss_promo_sk=[$7], > ss_ticket_number=[$8], ss_wholesale_cost=[$10], ss_list_price=[$11], > ss_coupon_amt=[$18], ss_sold_date_sk=[$22]): rowcount = 5.50076554E8, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 909 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200_orig.store_sales]]): > rowcount = 5.50076554E8, cumulative cost = {0}, id = 55{code} > Query > {code} > select cs1.product_name ,cs1.store_name ,cs1.store_zip ,cs1.b_street_number > ,cs1.b_streen_name ,cs1.b_city > ,cs1.b_zip ,cs1.c_street_number ,cs1.c_street_name ,cs1.c_city > ,cs1.c_zip ,cs1.syear ,cs1.cnt > ,cs1.s1 ,cs1.s2 ,cs1.s3 > ,cs2.s1 ,cs2.s2 ,cs2.s3 ,cs2.syear ,cs2.cnt > from > (select i_product_name as product_name ,i_item_sk as item_sk ,s_store_name as > store_name > ,s_zip as store_zip ,ad1.ca_street_number as b_street_number > ,ad1.ca_street_name as b_streen_name > ,ad1.ca_city as b_city ,ad1.ca_zip as b_zip ,ad2.ca_street_number as > c_street_number > ,ad2.ca_street_name as c_street_name ,ad2.ca_city as c_city ,ad2.ca_zip > as c_zip > ,d1.d_year as syear ,d2.d_year as fsyear ,d3.d_year as s2year ,count(*) > as cnt > ,sum(ss_wholesale_cost) as s1 ,sum(ss_list_price) as s2 > ,sum(ss_coupon_amt) as s3 > FROM store_sales > JOIN store_returns ON store_sales.ss_item_sk = > store_returns.sr_item_sk and store_sales.ss_ticket_number = > store_returns.sr_ticket_number > JOIN customer ON store_sales.ss_customer_sk = customer.c_customer_sk > JOIN date_dim d1 ON store_sales.ss_sold_date_sk = d1.d_date_sk > JOIN date_dim d2 ON customer.c_first_sales_date_sk = d2.d_date_sk > JOIN date_dim d3 ON customer.c_first_shipto_date_sk = d3.d_date_sk > JOIN store ON store_sales.ss_store_sk = store.s_store_sk > JOIN customer_demographics cd1 ON store_sales.ss_cdemo_sk= > cd1.cd_demo_sk > JOIN customer_demographics cd2 ON customer.c_current_cdemo_sk = > cd2.cd_demo_sk > JOIN promotion ON store_sales.ss_promo_sk = promotion.p_promo_sk > JOIN household_demographics hd1 ON store_sales.ss_hdemo_sk = > hd1.hd_demo_sk > JOIN household_demographics hd2 ON customer.c_current_hdemo_sk = > hd2.hd_demo_sk > JOIN customer_address ad1 ON store_sales.ss_addr_sk = > ad1.ca_address_sk > JOIN customer_address ad2 ON customer.c_current_addr_sk = > ad2.ca_address_sk > JOIN income_band ib1 ON hd1.hd_income_band_sk = ib1.ib_income_band_sk > JOIN income_band ib2 ON hd2.hd_income_band_sk = ib2.ib_income_band_sk > JOIN item ON store_sales.ss_item_sk = item.i_item_sk > JOIN > (select cs_item_sk > ,sum(cs_ext_list_price) as > sale,sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit) as refund > from catalog_sales JOIN catalog_returns > ON catalog_sales.cs_item_sk = catalog_returns.cr_item_sk > and catalog_sales.cs_order_number = catalog_returns.cr_order_number > group by cs_item_sk > having > sum(cs_ext_list_price)>2*sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit)) > cs_ui > ON store_sales.ss_item_sk = cs_ui.cs_item_sk > WHERE > cd1.cd_marital_status <> cd2.cd_marital_status and > i_color in ('maroon','burnished','dim','steel','navajo','chocolate') > and > i_current_price between 35 and 35 + 10 and > i_current_price between 35 + 1 and 35 + 15 > group by i_product_name ,i_item_sk ,s_store_name ,s_zip ,ad1.ca_street_number > ,ad1.ca_street_name ,ad1.ca_city ,ad1.ca_zip ,ad2.ca_street_number > ,ad2.ca_street_name ,ad2.ca_city ,ad2.ca_zip ,d1.d_year ,d2.d_year > ,d3.d_year > ) cs1 > JOIN > (select i_product_name as product_name ,i_item_sk as item_sk ,s_store_name as > store_name > ,s_zip as store_zip ,ad1.ca_street_number as b_street_number > ,ad1.ca_street_name as b_streen_name > ,ad1.ca_city as b_city ,ad1.ca_zip as b_zip ,ad2.ca_street_number as > c_street_number > ,ad2.ca_street_name as c_street_name ,ad2.ca_city as c_city ,ad2.ca_zip > as c_zip > ,d1.d_year as syear ,d2.d_year as fsyear ,d3.d_year as s2year ,count(*) > as cnt > ,sum(ss_wholesale_cost) as s1 ,sum(ss_list_price) as s2 > ,sum(ss_coupon_amt) as s3 > FROM store_sales > JOIN store_returns ON store_sales.ss_item_sk = > store_returns.sr_item_sk and store_sales.ss_ticket_number = > store_returns.sr_ticket_number > JOIN customer ON store_sales.ss_customer_sk = customer.c_customer_sk > JOIN date_dim d1 ON store_sales.ss_sold_date_sk = d1.d_date_sk > JOIN date_dim d2 ON customer.c_first_sales_date_sk = d2.d_date_sk > JOIN date_dim d3 ON customer.c_first_shipto_date_sk = d3.d_date_sk > JOIN store ON store_sales.ss_store_sk = store.s_store_sk > JOIN customer_demographics cd1 ON store_sales.ss_cdemo_sk= > cd1.cd_demo_sk > JOIN customer_demographics cd2 ON customer.c_current_cdemo_sk = > cd2.cd_demo_sk > JOIN promotion ON store_sales.ss_promo_sk = promotion.p_promo_sk > JOIN household_demographics hd1 ON store_sales.ss_hdemo_sk = > hd1.hd_demo_sk > JOIN household_demographics hd2 ON customer.c_current_hdemo_sk = > hd2.hd_demo_sk > JOIN customer_address ad1 ON store_sales.ss_addr_sk = > ad1.ca_address_sk > JOIN customer_address ad2 ON customer.c_current_addr_sk = > ad2.ca_address_sk > JOIN income_band ib1 ON hd1.hd_income_band_sk = ib1.ib_income_band_sk > JOIN income_band ib2 ON hd2.hd_income_band_sk = ib2.ib_income_band_sk > JOIN item ON store_sales.ss_item_sk = item.i_item_sk > JOIN > (select cs_item_sk > ,sum(cs_ext_list_price) as > sale,sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit) as refund > from catalog_sales JOIN catalog_returns > ON catalog_sales.cs_item_sk = catalog_returns.cr_item_sk > and catalog_sales.cs_order_number = catalog_returns.cr_order_number > group by cs_item_sk > having > sum(cs_ext_list_price)>2*sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit)) > cs_ui > ON store_sales.ss_item_sk = cs_ui.cs_item_sk > WHERE > cd1.cd_marital_status <> cd2.cd_marital_status and > i_color in ('maroon','burnished','dim','steel','navajo','chocolate') > and > i_current_price between 35 and 35 + 10 and > i_current_price between 35 + 1 and 35 + 15 > group by i_product_name ,i_item_sk ,s_store_name ,s_zip ,ad1.ca_street_number > ,ad1.ca_street_name ,ad1.ca_city ,ad1.ca_zip ,ad2.ca_street_number > ,ad2.ca_street_name ,ad2.ca_city ,ad2.ca_zip ,d1.d_year ,d2.d_year > ,d3.d_year > ) cs2 > ON cs1.item_sk=cs2.item_sk > where > cs1.syear = 2000 and > cs2.syear = 2000 + 1 and > cs2.cnt <= cs1.cnt and > cs1.store_name = cs2.store_name and > cs1.store_zip = cs2.store_zip > order by cs1.product_name ,cs1.store_name ,cs2.cnt > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)