[ https://issues.apache.org/jira/browse/HIVE-8261?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14160999#comment-14160999 ]
Harish Butani commented on HIVE-8261: ------------------------------------- [~vikram.dixit] can be add this to 0.14 branch > CBO : Predicate pushdown is removed by Optiq > --------------------------------------------- > > Key: HIVE-8261 > URL: https://issues.apache.org/jira/browse/HIVE-8261 > Project: Hive > Issue Type: Bug > Components: CBO > Affects Versions: 0.14.0, 0.13.1 > Reporter: Mostafa Mokhtar > Assignee: Harish Butani > Fix For: 0.14.0 > > Attachments: HIVE-8261.1.patch > > > Plan for TPC-DS Q64 wasn't optimal upon looking at the logical plan I > realized that predicate pushdown is not applied on date_dim d1. > Interestingly before optiq we have the predicate pushed : > {code} > HiveFilterRel(condition=[<=($5, $1)]) > HiveJoinRel(condition=[=($3, $6)], joinType=[inner]) > HiveProjectRel(_o__col0=[$0], _o__col1=[$2], _o__col2=[$3], > _o__col3=[$1]) > HiveFilterRel(condition=[=($0, 2000)]) > HiveAggregateRel(group=[{0, 1}], agg#0=[count()], agg#1=[sum($2)]) > HiveProjectRel($f0=[$4], $f1=[$5], $f2=[$2]) > HiveJoinRel(condition=[=($1, $8)], joinType=[inner]) > HiveJoinRel(condition=[=($1, $5)], joinType=[inner]) > HiveJoinRel(condition=[=($0, $3)], joinType=[inner]) > HiveProjectRel(ss_sold_date_sk=[$0], ss_item_sk=[$2], > ss_wholesale_cost=[$11]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.store_sales]]) > HiveProjectRel(d_date_sk=[$0], d_year=[$6]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.date_dim]]) > HiveFilterRel(condition=[AND(in($2, 'maroon', 'burnished', > 'dim', 'steel', 'navajo', 'chocolate'), between(false, $1, 35, +(35, 10)), > between(false, $1, +(35, 1), +(35, 15)))]) > HiveProjectRel(i_item_sk=[$0], i_current_price=[$5], > i_color=[$17]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.item]]) > HiveProjectRel(_o__col0=[$0]) > HiveAggregateRel(group=[{0}]) > HiveProjectRel($f0=[$0]) > HiveJoinRel(condition=[AND(=($0, $2), =($1, $3))], > joinType=[inner]) > HiveProjectRel(cs_item_sk=[$15], > cs_order_number=[$17]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_sales]]) > HiveProjectRel(cr_item_sk=[$2], cr_order_number=[$16]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_returns]]) > HiveProjectRel(_o__col0=[$0], _o__col1=[$2], _o__col3=[$1]) > HiveFilterRel(condition=[=($0, +(2000, 1))]) > HiveAggregateRel(group=[{0, 1}], agg#0=[count()]) > HiveProjectRel($f0=[$4], $f1=[$5], $f2=[$2]) > HiveJoinRel(condition=[=($1, $8)], joinType=[inner]) > HiveJoinRel(condition=[=($1, $5)], joinType=[inner]) > HiveJoinRel(condition=[=($0, $3)], joinType=[inner]) > HiveProjectRel(ss_sold_date_sk=[$0], ss_item_sk=[$2], > ss_wholesale_cost=[$11]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.store_sales]]) > HiveProjectRel(d_date_sk=[$0], d_year=[$6]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.date_dim]]) > HiveFilterRel(condition=[AND(in($2, 'maroon', 'burnished', > 'dim', 'steel', 'navajo', 'chocolate'), between(false, $1, 35, +(35, 10)), > between(false, $1, +(35, 1), +(35, 15)))]) > HiveProjectRel(i_item_sk=[$0], i_current_price=[$5], > i_color=[$17]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.item]]) > HiveProjectRel(_o__col0=[$0]) > HiveAggregateRel(group=[{0}]) > HiveProjectRel($f0=[$0]) > HiveJoinRel(condition=[AND(=($0, $2), =($1, $3))], > joinType=[inner]) > HiveProjectRel(cs_item_sk=[$15], > cs_order_number=[$17]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_sales]]) > HiveProjectRel(cr_item_sk=[$2], cr_order_number=[$16]) > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_returns]]) > {code} > While after Optiq the filter on date_dim gets pulled up the plan > {code} > HiveFilterRel(condition=[<=($5, $1)]): rowcount = 1.0, cumulative cost = > {5.50188454E8 rows, 0.0 cpu, 0.0 io}, id = 6895 > HiveProjectRel(_o__col0=[$0], _o__col1=[$1], _o__col2=[$2], > _o__col3=[$3], _o__col00=[$4], _o__col10=[$5], _o__col30=[$6]): rowcount = > 1.0, cumulative cost = {5.50188454E8 rows, 0.0 cpu, 0.0 io}, id = 7046 > HiveJoinRel(condition=[=($3, $6)], joinType=[inner]): rowcount = 1.0, > cumulative cost = {5.50188454E8 rows, 0.0 cpu, 0.0 io}, id = 7041 > HiveProjectRel(_o__col0=[$0], _o__col1=[$2], _o__col2=[$3], > _o__col3=[$1]): rowcount = 1.0, cumulative cost = {5.50188452E8 rows, 0.0 > cpu, 0.0 io}, id = 6857 > HiveFilterRel(condition=[=($0, 2000)]): rowcount = 1.0, cumulative > cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 6855 > HiveAggregateRel(group=[{0, 1}], agg#0=[count()], > agg#1=[sum($2)]): rowcount = 1.0, cumulative cost = {5.50188452E8 rows, 0.0 > cpu, 0.0 io}, id = 6853 > HiveProjectRel($f0=[$4], $f1=[$5], $f2=[$2]): rowcount = 1.0, > cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 6851 > HiveProjectRel(ss_sold_date_sk=[$3], ss_item_sk=[$4], > ss_wholesale_cost=[$5], d_date_sk=[$0], d_year=[$1], i_item_sk=[$6], > i_current_price=[$7], i_color=[$8], _o__col0=[$2]): rowcount = 1.0, > cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 7039 > HiveJoinRel(condition=[=($3, $0)], joinType=[inner]): > rowcount = 1.0, cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = > 7037 > HiveProjectRel(d_date_sk=[$0], d_year=[$6]): rowcount = > 73049.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 6861 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.date_dim]]): rowcount > = 73049.0, cumulative cost = {0}, id = 6537 > HiveJoinRel(condition=[=($2, $0)], joinType=[inner]): > rowcount = 1.0, cumulative cost = {5.50115402E8 rows, 0.0 cpu, 0.0 io}, id = > 7035 > HiveProjectRel(_o__col0=[$0]): rowcount = 38846.0, > cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 6847 > HiveAggregateRel(group=[{0}]): rowcount = 38846.0, > cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 6845 > HiveProjectRel($f0=[$0]): rowcount = > 6.692553251460564E8, cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, > id = 6843 > HiveProjectRel(cs_item_sk=[$0], > cs_order_number=[$1], cr_item_sk=[$2], cr_order_number=[$3]): rowcount = > 6.692553251460564E8, cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, > id = 6945 > HiveJoinRel(condition=[AND(=($0, $2), =($1, > $3))], joinType=[inner]): rowcount = 6.692553251460564E8, cumulative cost = > {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 6940 > HiveProjectRel(cs_item_sk=[$15], > cs_order_number=[$17]): rowcount = 2.86549727E8, cumulative cost = {0.0 rows, > 0.0 cpu, 0.0 io}, id = 6871 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_sales]]): > rowcount = 2.86549727E8, cumulative cost = {0}, id = 6531 > HiveProjectRel(cr_item_sk=[$2], > cr_order_number=[$16]): rowcount = 2.8798881E7, cumulative cost = {0.0 rows, > 0.0 cpu, 0.0 io}, id = 6873 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_returns]]): > rowcount = 2.8798881E7, cumulative cost = {0}, id = 6532 > HiveJoinRel(condition=[=($1, $3)], joinType=[inner]): > rowcount = 1.0, cumulative cost = {5.50076555E8 rows, 0.0 cpu, 0.0 io}, id = > 6996 > HiveProjectRel(ss_sold_date_sk=[$0], ss_item_sk=[$2], > ss_wholesale_cost=[$11]): rowcount = 5.50076554E8, cumulative cost = {0.0 > rows, 0.0 cpu, 0.0 io}, id = 6859 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.store_sales]]): > rowcount = 5.50076554E8, cumulative cost = {0}, id = 6538 > HiveFilterRel(condition=[AND(in($2, 'maroon', > 'burnished', 'dim', 'steel', 'navajo', 'chocolate'), between(false, $1, 35, > +(35, 10)), between(false, $1, +(35, 1), +(35, 15)))]): rowcount = 1.0, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 6833 > HiveProjectRel(i_item_sk=[$0], > i_current_price=[$5], i_color=[$17]): rowcount = 48000.0, cumulative cost = > {0.0 rows, 0.0 cpu, 0.0 io}, id = 6831 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.item]]): rowcount = > 48000.0, cumulative cost = {0}, id = 6539 > HiveProjectRel(_o__col0=[$0], _o__col1=[$2], _o__col3=[$1]): rowcount > = 1.0, cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 6891 > HiveFilterRel(condition=[=($0, +(2000, 1))]): rowcount = 1.0, > cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 6889 > HiveAggregateRel(group=[{0, 1}], agg#0=[count()]): rowcount = > 1.0, cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 6887 > HiveProjectRel($f0=[$4], $f1=[$5], $f2=[$2]): rowcount = 1.0, > cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 6885 > HiveProjectRel(ss_sold_date_sk=[$3], ss_item_sk=[$4], > ss_wholesale_cost=[$5], d_date_sk=[$0], d_year=[$1], i_item_sk=[$6], > i_current_price=[$7], i_color=[$8], _o__col0=[$2]): rowcount = 1.0, > cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = 6992 > HiveJoinRel(condition=[=($3, $0)], joinType=[inner]): > rowcount = 1.0, cumulative cost = {5.50188452E8 rows, 0.0 cpu, 0.0 io}, id = > 6990 > HiveProjectRel(d_date_sk=[$0], d_year=[$6]): rowcount = > 73049.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 6861 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.date_dim]]): rowcount > = 73049.0, cumulative cost = {0}, id = 6537 > HiveJoinRel(condition=[=($2, $0)], joinType=[inner]): > rowcount = 1.0, cumulative cost = {5.50115402E8 rows, 0.0 cpu, 0.0 io}, id = > 6988 > HiveProjectRel(_o__col0=[$0]): rowcount = 38846.0, > cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 6881 > HiveAggregateRel(group=[{0}]): rowcount = 38846.0, > cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 6879 > HiveProjectRel($f0=[$0]): rowcount = > 6.692553251460564E8, cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, > id = 6877 > HiveProjectRel(cs_item_sk=[$0], > cs_order_number=[$1], cr_item_sk=[$2], cr_order_number=[$3]): rowcount = > 6.692553251460564E8, cumulative cost = {3.15348608E8 rows, 0.0 cpu, 0.0 io}, > id = 6938 > HiveJoinRel(condition=[AND(=($0, $2), =($1, > $3))], joinType=[inner]): rowcount = 6.692553251460564E8, cumulative cost = > {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 6933 > HiveProjectRel(cs_item_sk=[$15], > cs_order_number=[$17]): rowcount = 2.86549727E8, cumulative cost = {0.0 rows, > 0.0 cpu, 0.0 io}, id = 6871 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_sales]]): > rowcount = 2.86549727E8, cumulative cost = {0}, id = 6531 > HiveProjectRel(cr_item_sk=[$2], > cr_order_number=[$16]): rowcount = 2.8798881E7, cumulative cost = {0.0 rows, > 0.0 cpu, 0.0 io}, id = 6873 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.catalog_returns]]): > rowcount = 2.8798881E7, cumulative cost = {0}, id = 6532 > HiveJoinRel(condition=[=($1, $3)], joinType=[inner]): > rowcount = 1.0, cumulative cost = {5.50076555E8 rows, 0.0 cpu, 0.0 io}, id = > 6949 > HiveProjectRel(ss_sold_date_sk=[$0], ss_item_sk=[$2], > ss_wholesale_cost=[$11]): rowcount = 5.50076554E8, cumulative cost = {0.0 > rows, 0.0 cpu, 0.0 io}, id = 6859 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.store_sales]]): > rowcount = 5.50076554E8, cumulative cost = {0}, id = 6538 > HiveFilterRel(condition=[AND(in($2, 'maroon', > 'burnished', 'dim', 'steel', 'navajo', 'chocolate'), between(false, $1, 35, > +(35, 10)), between(false, $1, +(35, 1), +(35, 15)))]): rowcount = 1.0, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 6867 > HiveProjectRel(i_item_sk=[$0], > i_current_price=[$5], i_color=[$17]): rowcount = 48000.0, cumulative cost = > {0.0 rows, 0.0 cpu, 0.0 io}, id = 6865 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_200.item]]): rowcount = > 48000.0, cumulative cost = {0}, id = 6539 > {code} > I simplified the query a little bit while still maintaining the query > structure > The query : > Note that the final join between cs1 and cs2 has a predicates "cs1.syear = > 2000 and cs2.syear = 2000 + 1" > {code} > select cs1.syear ,cs1.cnt > ,cs1.s1 ,cs2.syear ,cs2.cnt > from > (select d1.d_year as syear ,count(*) as cnt,sum(ss_wholesale_cost) as s1 > ,i_item_sk as item_sk > FROM store_sales > JOIN date_dim d1 ON store_sales.ss_sold_date_sk = d1.d_date_sk > JOIN item ON store_sales.ss_item_sk = item.i_item_sk > JOIN > (select cs_item_sk > from catalog_sales JOIN catalog_returns > ON catalog_sales.cs_item_sk = catalog_returns.cr_item_sk > and catalog_sales.cs_order_number = catalog_returns.cr_order_number > group by cs_item_sk) cs_ui > ON store_sales.ss_item_sk = cs_ui.cs_item_sk > WHERE > i_color in ('maroon','burnished','dim','steel','navajo','chocolate') > and > i_current_price between 35 and 35 + 10 and > i_current_price between 35 + 1 and 35 + 15 > group by d1.d_year,i_item_sk > ) cs1 > JOIN > (select d1.d_year as syear ,count(*) as cnt,sum(ss_wholesale_cost) as s1 , > i_item_sk as item_sk > FROM store_sales > JOIN date_dim d1 ON store_sales.ss_sold_date_sk = d1.d_date_sk > JOIN item ON store_sales.ss_item_sk = item.i_item_sk > JOIN > (select cs_item_sk > from catalog_sales JOIN catalog_returns > ON catalog_sales.cs_item_sk = catalog_returns.cr_item_sk > and catalog_sales.cs_order_number = catalog_returns.cr_order_number > group by cs_item_sk) cs_ui > ON store_sales.ss_item_sk = cs_ui.cs_item_sk > WHERE > i_color in ('maroon','burnished','dim','steel','navajo','chocolate') > and > i_current_price between 35 and 35 + 10 and > i_current_price between 35 + 1 and 35 + 15 > group by d1.d_year,i_item_sk > ) cs2 > ON cs1.item_sk=cs2.item_sk > where > cs1.syear = 2000 and > cs2.syear = 2000 + 1 and > cs2.cnt <= cs1.cnt; > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)