[ 
https://issues.apache.org/jira/browse/HIVE-7991?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Prasanth J updated HIVE-7991:
-----------------------------
    Labels:   (was: performance)

> Incorrect calculation of number of rows in JoinStatsRule.process results in 
> overflow
> ------------------------------------------------------------------------------------
>
>                 Key: HIVE-7991
>                 URL: https://issues.apache.org/jira/browse/HIVE-7991
>             Project: Hive
>          Issue Type: Sub-task
>          Components: Statistics
>    Affects Versions: 0.13.1
>            Reporter: Mostafa Mokhtar
>            Assignee: Prasanth J
>
> This loop results in adding the parent twice incase of a 3 way join of 
> store_sales  x date_dim x store
> {code}
>          for (int pos = 0; pos < parents.size(); pos++) {
>             ReduceSinkOperator parent = (ReduceSinkOperator) 
> jop.getParentOperators().get(pos);
>             Statistics parentStats = parent.getStatistics();
>             List<ExprNodeDesc> keyExprs = parent.getConf().getKeyCols();
>             // Parent RS may have column statistics from multiple parents.
>             // Populate table alias to row count map, this will be used later 
> to
>             // scale down/up column statistics based on new row count
>             // NOTE: JOIN with UNION as parent of RS will not have table alias
>             // propagated properly. UNION operator does not propagate the 
> table
>             // alias of subqueries properly to expression nodes. Hence 
> union20.q
>             // will have wrong number of rows.
>             Set<String> tableAliases = 
> StatsUtils.getAllTableAlias(parent.getColumnExprMap());
>             for (String tabAlias : tableAliases) {
>               rowCountParents.put(tabAlias, parentStats.getNumRows());
>             }
> {code}
> In the first join we have rowCountParents with {store_sales=120464862, 
> date_dim=36524} which is correct.
> For the second join result rowCountParents ends up with {store=212, 
> store_sales=120464862, date_dim=120464862} where it should be {store=212, 
> store_sales=120464862, date_dim=36524}.
> The result of this is that computeNewRowCount ends up multiplying row count 
> of store_sales x store_sales which makes the number of rows really high and 
> eventually over flow.
> Plan snippet : 
> {code}
>    Map 1
>             Map Operator Tree:
>                 TableScan
>                   alias: store_sales
>                   filterExpr: (((ss_sold_date_sk is not null and ss_store_sk 
> is not null) and ss_item_sk is not null) and ss_sold_date BETWEEN 
> '1999-06-01' AND '2000-05-31') (type: boolean)
>                   Statistics: Num rows: 110339135 Data size: 4817453454 Basic 
> stats: COMPLETE Column stats: COMPLETE
>                   Filter Operator
>                     predicate: ((ss_sold_date_sk is not null and ss_store_sk 
> is not null) and ss_item_sk is not null) (type: boolean)
>                     Statistics: Num rows: 107740258 Data size: 2124353556 
> Basic stats: COMPLETE Column stats: COMPLETE
>                     Map Join Operator
>                       condition map:
>                            Inner Join 0 to 1
>                       condition expressions:
>                         0 {ss_sold_date_sk} {ss_item_sk} {ss_store_sk} 
> {ss_quantity} {ss_sales_price} {ss_sold_date}
>                         1 {d_date_sk} {d_month_seq} {d_year} {d_moy} {d_qoy}
>                       keys:
>                         0 ss_sold_date_sk (type: int)
>                         1 d_date_sk (type: int)
>                       outputColumnNames: _col0, _col2, _col7, _col10, _col13, 
> _col23, _col27, _col30, _col33, _col35, _col37
>                       input vertices:
>                         1 Map 6
>                       Statistics: Num rows: 120464862 Data size: 26984129088 
> Basic stats: COMPLETE Column stats: COMPLETE
>                       Map Join Operator
>                         condition map:
>                              Inner Join 0 to 1
>                         condition expressions:
>                           0 {_col0} {_col2} {_col7} {_col10} {_col13} 
> {_col23} {_col27} {_col30} {_col33} {_col35} {_col37}
>                           1 {s_store_sk} {s_store_id}
>                         keys:
>                           0 _col7 (type: int)
>                           1 s_store_sk (type: int)
>                         outputColumnNames: _col0, _col2, _col7, _col10, 
> _col13, _col23, _col27, _col30, _col33, _col35, _col37, _col58, _col59
>                         input vertices:
>                           1 Map 5
>                         Statistics: Num rows: 17886616227069518 Data size: 
> 5866810122478801920 Basic stats: COMPLETE Column stats: COMPLETE
>                         Map Join Operator
>                           condition map:
>                                Inner Join 0 to 1
>                           condition expressions:
>                             0 {_col0} {_col2} {_col7} {_col10} {_col13} 
> {_col23} {_col27} {_col30} {_col33} {_col35} {_col37} {_col58} {_col59}
>                             1 {i_item_sk} {i_brand} {i_class} {i_category} 
> {i_product_name}
>                           keys:
>                             0 _col2 (type: int)
>                             1 i_item_sk (type: int)
>                           outputColumnNames: _col0, _col2, _col7, _col10, 
> _col13, _col23, _col27, _col30, _col33, _col35, _col37, _col58, _col59, 
> _col90, _col98, _col100, _col102, _col111
>                           input vertices:
>                             1 Map 7
>                           Statistics: Num rows: -9223372036854775808 Data 
> size: 0 Basic stats: NONE Column stats: COMPLETE
>                           Filter Operator
>                             predicate: (((((_col0 = _col27) and (_col2 = 
> _col90)) and (_col7 = _col58)) and _col30 BETWEEN 1193 AND 1204) and _col23 
> BETWEEN '1999-06-01' AND '2000-05-31') (type: boolean)
>                             Statistics: Num rows: -9223372036854775808 Data 
> size: 0 Basic stats: NONE Column stats: COMPLETE
>                             Select Operator
>                               expressions: _col102 (type: string), _col100 
> (type: string), _col98 (type: string), _col111 (type: string), _col33 (type: 
> int), _col37 (type: int), _col35 (type: int), _col59 (type: string), _col13 
> (type: float), _col10 (type: int)
>                               outputColumnNames: _col102, _col100, _col98, 
> _col111, _col33, _col37, _col35, _col59, _col13, _col10
>                               Statistics: Num rows: -9223372036854775808 Data 
> size: 0 Basic stats: NONE Column stats: COMPLETE
>                               Group By Operator
>                                 aggregations: sum(COALESCE((_col13 * 
> _col10),0))
>                                 keys: _col102 (type: string), _col100 (type: 
> string), _col98 (type: string), _col111 (type: string), _col33 (type: int), 
> _col37 (type: int), _col35 (type: int), _col59 (type: string), '0' (type: 
> string)
>                                 mode: hash
>                                 outputColumnNames: _col0, _col1, _col2, 
> _col3, _col4, _col5, _col6, _col7, _col8, _col9
>                                 Statistics: Num rows: -9223372036854775808 
> Data size: 0 Basic stats: NONE Column stats: COMPLETE
>                                 Reduce Output Operator
>                                   key expressions: _col0 (type: string), 
> _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 
> (type: int), _col5 (type: int), _col6 (type: int), _col7 (type: string), 
> _col8 (type: string)
>                                   sort order: +++++++++
>                                   Map-reduce partition columns: _col0 (type: 
> string), _col1 (type: string), _col2 (type: string), _col3 (type: string), 
> _col4 (type: int), _col5 (type: int), _col6 (type: int), _col7 (type: 
> string), _col8 (type: string)
>                                   Statistics: Num rows: -9223372036854775808 
> Data size: 0 Basic stats: NONE Column stats: COMPLETE
>                                   value expressions: _col9 (type: double)
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to