[ https://issues.apache.org/jira/browse/HIVE-7613?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14120697#comment-14120697 ]
Suhas Satish commented on HIVE-7613: ------------------------------------ as a part of this work, we should also enable auto_sortmerge_join_1.q which currently fails with {code:title=auto_sortmerge_join_1.stackTrace|borderStyle=solid} 2014-09-03 16:12:59,607 ERROR [main]: spark.SparkClient (SparkClient.java:execute(166)) - Error executing Spark Plan org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 (TID 1, localhost): java.lang.RuntimeException: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row {"key":"0","value":"val_0","ds":"2008-04-08"} org.apache.hadoop.hive.ql.exec.spark.SparkMapRecordHandler.processRow(SparkMapRecordHandler.java:151) org.apache.hadoop.hive.ql.exec.spark.HiveMapFunctionResultList.processNextRecord(HiveMapFunctionResultList.java:47) org.apache.hadoop.hive.ql.exec.spark.HiveMapFunctionResultList.processNextRecord(HiveMapFunctionResultList.java:28) org.apache.hadoop.hive.ql.exec.spark.HiveBaseFunctionResultList$ResultIterator.hasNext(HiveBaseFunctionResultList.java:99) scala.collection.convert.Wrappers$JIteratorWrapper.hasNext(Wrappers.scala:41) scala.collection.Iterator$class.foreach(Iterator.scala:727) scala.collection.AbstractIterator.foreach(Iterator.scala:1157) org.apache.spark.shuffle.hash.HashShuffleWriter.write(HashShuffleWriter.scala:65) org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) org.apache.spark.scheduler.Task.run(Task.scala:54) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1177) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1166) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1165) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1165) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1383) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) {code} > Research optimization of auto convert join to map join [Spark branch] > --------------------------------------------------------------------- > > Key: HIVE-7613 > URL: https://issues.apache.org/jira/browse/HIVE-7613 > Project: Hive > Issue Type: Sub-task > Components: Spark > Reporter: Chengxiang Li > Assignee: Szehon Ho > Priority: Minor > Attachments: HIve on Spark Map join background.docx > > > ConvertJoinMapJoin is an optimization the replaces a common join(aka shuffle > join) with a map join(aka broadcast or fragment replicate join) when > possible. we need to research how to make it workable with Hive on Spark. -- This message was sent by Atlassian JIRA (v6.3.4#6332)