Colin Ma created HIVE-16004: ------------------------------- Summary: OutOfMemory in SparkReduceRecordHandler with vectorization mode Key: HIVE-16004 URL: https://issues.apache.org/jira/browse/HIVE-16004 Project: Hive Issue Type: Bug Reporter: Colin Ma Assignee: Colin Ma
For the query 28 of TPCs-BB with 1T data, the executor memory is set as 30G. Get the following exception: java.lang.OutOfMemoryError at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123) at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117) at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) at java.io.DataOutputStream.write(DataOutputStream.java:107) at org.apache.hadoop.hive.ql.exec.vector.VectorizedBatchUtil.setVector(VectorizedBatchUtil.java:467) at org.apache.hadoop.hive.ql.exec.vector.VectorizedBatchUtil.addRowToBatchFrom(VectorizedBatchUtil.java:238) at org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processVectors(SparkReduceRecordHandler.java:367) at org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processRow(SparkReduceRecordHandler.java:286) at org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processRow(SparkReduceRecordHandler.java:220) at org.apache.hadoop.hive.ql.exec.spark.HiveReduceFunctionResultList.processNextRecord(HiveReduceFunctionResultList.java:49) at org.apache.hadoop.hive.ql.exec.spark.HiveReduceFunctionResultList.processNextRecord(HiveReduceFunctionResultList.java:28) at org.apache.hadoop.hive.ql.exec.spark.HiveBaseFunctionResultList.hasNext(HiveBaseFunctionResultList.java:85) at scala.collection.convert.Wrappers$JIteratorWrapper.hasNext(Wrappers.scala:42) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) at org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127) at org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127) at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1974) at org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1974) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) at org.apache.spark.scheduler.Task.run(Task.scala:85) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) I think DataOutputBuffer isn't cleared on time cause this problem. -- This message was sent by Atlassian JIRA (v6.3.15#6346)