Colin Ma created HIVE-16004:
-------------------------------

             Summary: OutOfMemory in SparkReduceRecordHandler with 
vectorization mode
                 Key: HIVE-16004
                 URL: https://issues.apache.org/jira/browse/HIVE-16004
             Project: Hive
          Issue Type: Bug
            Reporter: Colin Ma
            Assignee: Colin Ma


For the query 28 of TPCs-BB with 1T data, the executor memory is set as 30G. 
Get the following exception:
java.lang.OutOfMemoryError
        at 
java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123)
        at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117)
        at 
java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
        at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
        at java.io.DataOutputStream.write(DataOutputStream.java:107)
        at 
org.apache.hadoop.hive.ql.exec.vector.VectorizedBatchUtil.setVector(VectorizedBatchUtil.java:467)
        at 
org.apache.hadoop.hive.ql.exec.vector.VectorizedBatchUtil.addRowToBatchFrom(VectorizedBatchUtil.java:238)
        at 
org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processVectors(SparkReduceRecordHandler.java:367)
        at 
org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processRow(SparkReduceRecordHandler.java:286)
        at 
org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processRow(SparkReduceRecordHandler.java:220)
        at 
org.apache.hadoop.hive.ql.exec.spark.HiveReduceFunctionResultList.processNextRecord(HiveReduceFunctionResultList.java:49)
        at 
org.apache.hadoop.hive.ql.exec.spark.HiveReduceFunctionResultList.processNextRecord(HiveReduceFunctionResultList.java:28)
        at 
org.apache.hadoop.hive.ql.exec.spark.HiveBaseFunctionResultList.hasNext(HiveBaseFunctionResultList.java:85)
        at 
scala.collection.convert.Wrappers$JIteratorWrapper.hasNext(Wrappers.scala:42)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
        at 
org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127)
        at 
org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127)
        at 
org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1974)
        at 
org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1974)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
        at org.apache.spark.scheduler.Task.run(Task.scala:85)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745) 

I think DataOutputBuffer isn't cleared on time cause this problem.



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Reply via email to