Sergio Peña created HIVE-10086: ---------------------------------- Summary: Hive throws error when accessing Parquet file schema using field name match Key: HIVE-10086 URL: https://issues.apache.org/jira/browse/HIVE-10086 Project: Hive Issue Type: Bug Affects Versions: 1.0.0 Reporter: Sergio Peña Assignee: Sergio Peña
When Hive table schema contains a portion of the schema of a Parquet file, then the access to the values should work if the field names match the schema. This does not work when a struct<> data type is in the schema, and the Hive schema contains just a portion of the struct elements. Hive throws an error instead. This is the example and how to reproduce: First, create a parquet table, and add some values on it: {code} CREATE TABLE test1 (id int, name string, address struct<number:int,street:string,zip:string>) STORED AS PARQUET; INSERT INTO TABLE test1 SELECT 1, 'Roger', named_struct('number',8600,'street','Congress Ave.','zip','87366') FROM srcpart LIMIT 1; {code} Note: {{srcpart}} could be any table. It is just used to leverage the INSERT statement. The above table example generates the following Parquet file schema: {code} message hive_schema { optional int32 id; optional binary name (UTF8); optional group address { optional int32 number; optional binary street (UTF8); optional binary zip (UTF8); } } {code} Afterwards, I create a table that contains just a portion of the schema, and load the Parquet file generated above, a query will fail on that table: {code} CREATE TABLE test1 (name string, address struct<street:string>) STORED AS PARQUET; LOAD DATA LOCAL INPATH '/tmp/HiveGroup.parquet' OVERWRITE INTO TABLE test1; hive> SELECT name FROM test1; OK Roger Time taken: 0.071 seconds, Fetched: 1 row(s) hive> SELECT address FROM test1; OK Failed with exception java.io.IOException:org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.UnsupportedOperationException: Cannot inspect org.apache.hadoop.io.IntWritable Time taken: 0.085 seconds {code} I would expect that Parquet can access the matched names, but Hive throws an error instead. -- This message was sent by Atlassian JIRA (v6.3.4#6332)