Hi, I'd like to improve SVM evaluate function so that it can use LabeledVector (and not only Vector). Indeed, what is done in test is the following (data is a DataSet[LabeledVector]):
val test = data.map(l => (l.vector, l.label)) svm.evaluate(test) We would like to do: sm.evaluate(data) Adding this "new" code: implicit def predictLabeledPoint[T <: LabeledVector] = { new PredictOperation ... } gives me a predictOperation that should be used with defaultEvaluateDataSetOperation with the correct signature (ie with T <: LabeledVector and not T<: Vector). Nonetheless, tests are failing: it should "predict with LabeledDataPoint" in { val env = ExecutionEnvironment.getExecutionEnvironment val svm = SVM(). setBlocks(env.getParallelism). setIterations(100). setLocalIterations(100). setRegularization(0.002). setStepsize(0.1). setSeed(0) val trainingDS = env.fromCollection(Classification.trainingData) svm.fit(trainingDS) val predictionPairs = svm.evaluate(trainingDS) .... } There is no PredictOperation defined for org.apache.flink.ml.classification.SVM which takes a DataSet[org.apache.flink.ml.common.LabeledVector] as input. java.lang.RuntimeException: There is no PredictOperation defined for org.apache.flink.ml.classification.SVM which takes a DataSet[org.apache.flink.ml.common.LabeledVector] as input. Thanks Regards Thomas