Hey there, Please use the user mailing list for user-related questions (this list is for Flink internals only).
At the moment outer joins are not directly supported in Flink, but there are good indications that this will change in the next 4-8 weeks. For the time being, you can use a CoGroup with a custom UDF to implement the semantics of a left outer join. If you dig through the mailing list archives for the past 2-3 weeks and search for "outer join" you will find a thread discussing the details of the workaround implementation. Regards, Alexander 2015-04-26 21:07 GMT+02:00 hager sallah <loveallah1...@yahoo.com.invalid>: > how can handle left outer join for any two dataset this dataset inlcude > any filed number > example on two dataset data set one > ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); > DataSet<Tuple4<Integer, String, String,String>> > customer=env.readCsvFile("/home/hadoop/Desktop/Dataset/customer.csv") > .fieldDelimiter('|') > .includeFields("11110000").ignoreFirstLine() > .types(Integer.class,String.class,String.class,String.class);dataset two > ExecutionEnvironment orders = > ExecutionEnvironment.getExecutionEnvironment(); > DataSet<Tuple3<Integer, String, String> > customer=env.readCsvFile("/home/hadoop/Desktop/Dataset/order.csv") > .fieldDelimiter('|') > .includeFields("11110000").ignoreFirstLine() > .types(Integer.class,String.class,String.classs); >