I am also against the manual cross method. Isn't it the idea of the table API to hide the actual implementation from the user?
Best regards, Felix Am 17.04.2015 10:09 vorm. schrieb "Till Rohrmann" <till.rohrm...@gmail.com>: > Why not doing two separate joins, union the results and doing a distinct > operation on the combined key? > > On Fri, Apr 17, 2015 at 9:42 AM, Aljoscha Krettek <aljos...@apache.org> > wrote: > > > So, the first thing is a "feature" of the Java API that removes > > duplicate fields in keys, so an equi-join on (0,0) with (0,1) would > > throw an error because one 0 is removed from the first key. > > > > The second thing is a feature of the Table API where the error message > > is hinting at the problem: > > Could not derive equi-join predicates for predicate 'nodeID === 'src > > || 'nodeID === 'target > > > > The problem is, that this would have to be executed as a cross > > followed by a filter because none of the predicates are equi-join > > predicates that must always be true (because of the OR relation). This > > I don't want to allow, because a cross can be very expensive. I will > > add a jira ticket for adding a manual cross operation to the Table > > API. > > > > On Thu, Apr 16, 2015 at 2:28 PM, Felix Neutatz <neut...@googlemail.com> > > wrote: > > > Hi, > > > > > > I want to join two tables in the following way: > > > > > > case class WeightedEdge(src: Int, target: Int, weight: Double) > > > case class Community(communityID: Int, nodeID: Int) > > > > > > case class CommunitySumTotal(communityID: Int, sumTotal: Double) > > > > > > val communities: DataSet[Community] > > > val weightedEdges: DataSet[WeightedEdge] > > > > > > val communitiesTable = communities.toTable > > > val weightedEdgesTable = weightedEdges.toTable > > > > > > val sumTotal = communitiesTable.join(weightedEdgesTable) > > > .where("nodeID = src && nodeID = target") > > > .groupBy('communityID) > > > .select("communityID, weight.sum as > sumTotal").toSet[CommunitySumTotal] > > > > > > > > > but I get this exception: > > > > > > Exception in thread "main" > > > org.apache.flink.api.common.InvalidProgramException: The types of the > key > > > fields do not match: The number of specified keys is different. > > > at > > > > > > org.apache.flink.api.java.operators.JoinOperator.<init>(JoinOperator.java:96) > > > at > > > > > > org.apache.flink.api.java.operators.JoinOperator$EquiJoin.<init>(JoinOperator.java:197) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.createJoin(JavaBatchTranslator.scala:310) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:145) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:195) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:183) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translate(JavaBatchTranslator.scala:78) > > > at > > > > > > org.apache.flink.api.scala.table.ScalaBatchTranslator.translate(ScalaBatchTranslator.scala:55) > > > at > > > > > > org.apache.flink.api.scala.table.TableConversions.toSet(TableConversions.scala:37) > > > Moreover when I use the following where clause: > > > > > > .where("nodeID = src || nodeID = target") > > > > > > I get another error: > > > > > > Exception in thread "main" > > > org.apache.flink.api.table.ExpressionException: Could not derive > > > equi-join predicates for predicate 'nodeID === 'src || 'nodeID === > > > 'target. > > > > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.createJoin(JavaBatchTranslator.scala:296) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:145) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:195) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:183) > > > at > > > > > > org.apache.flink.api.java.table.JavaBatchTranslator.translate(JavaBatchTranslator.scala:78) > > > at > > > > > > org.apache.flink.api.scala.table.ScalaBatchTranslator.translate(ScalaBatchTranslator.scala:55) > > > at > > > > > > org.apache.flink.api.scala.table.TableConversions.toSet(TableConversions.scala:37) > > > > > > > > > Apart from that the TableApi seems really promising. It's a really > great > > tool. > > > > > > Thank you for your help, > > > > > > Felix > > >