On Mon, Feb 03, 2025 at 01:25:08PM +0530, Shaiq Wani wrote: > In case some CPUs don't support AVX512. Enable AVX2 for them to > get better per-core performance. > > The single queue model processes all packets in order while > the split queue model separates packet data and metadata into > different queues for parallel processing and improved performance. > > Signed-off-by: Shaiq Wani <shaiq.w...@intel.com>
Acked-by: Bruce Richardson <bruce.richard...@intel.com> See feedback inline below. Would it be possible for this release to rework the driver to use the common functions from drivers/net/intel/common? If not, can that be looked at for the next release? /Bruce > --- > doc/guides/nics/idpf.rst | 8 +- > doc/guides/rel_notes/release_25_03.rst | 7 + > drivers/common/idpf/idpf_common_device.h | 1 + > drivers/common/idpf/idpf_common_rxtx.h | 4 + > drivers/common/idpf/idpf_common_rxtx_avx2.c | 224 ++++++++++++++++++++ > drivers/common/idpf/version.map | 1 + > drivers/net/intel/idpf/idpf_rxtx.c | 13 ++ > 7 files changed, 255 insertions(+), 3 deletions(-) > > diff --git a/doc/guides/nics/idpf.rst b/doc/guides/nics/idpf.rst > index 0370989a07..90b651d193 100644 > --- a/doc/guides/nics/idpf.rst > +++ b/doc/guides/nics/idpf.rst > @@ -93,9 +93,11 @@ The paths are chosen based on 2 conditions: > > - ``CPU`` > > - On the x86 platform, the driver checks if the CPU supports AVX512. > - If the CPU supports AVX512 and EAL argument ``--force-max-simd-bitwidth`` > - is set to 512, AVX512 paths will be chosen. > + On the x86 platform, the driver checks if the CPU supports AVX instruction > set. > + If the CPU supports AVX512 and EAL argument --force-max-simd-bitwidth is > set to 512, AVX512 paths will be chosen > + else if --force-max-simd-bitwidth is set to 256, AVX2 paths will be chosen. > + Note that 256 is the default bitwidth if no specific value is provided. > + > > - ``Offload features`` > > diff --git a/doc/guides/rel_notes/release_25_03.rst > b/doc/guides/rel_notes/release_25_03.rst > index a88b04d958..905e8f363c 100644 > --- a/doc/guides/rel_notes/release_25_03.rst > +++ b/doc/guides/rel_notes/release_25_03.rst > @@ -76,6 +76,13 @@ New Features > > * Added support for virtual function (VF). > > +* **Added support of AVX2 instructions on IDPF.** > + > + Support for AVX2 instructions in IDPF single queue RX and TX path > + added.The single queue model processes all packets in order within > + one RX queue, while the split queue model separates packet data and > + metadata into different queues for parallel processing and improved > performance. > + > > Removed Items > ------------- > diff --git a/drivers/common/idpf/idpf_common_device.h > b/drivers/common/idpf/idpf_common_device.h > index 734be1c88a..5f3e4a4fcf 100644 > --- a/drivers/common/idpf/idpf_common_device.h > +++ b/drivers/common/idpf/idpf_common_device.h > @@ -124,6 +124,7 @@ struct idpf_vport { > bool rx_vec_allowed; > bool tx_vec_allowed; > bool rx_use_avx2; > + bool tx_use_avx2; > bool rx_use_avx512; > bool tx_use_avx512; > > diff --git a/drivers/common/idpf/idpf_common_rxtx.h > b/drivers/common/idpf/idpf_common_rxtx.h > index f50cf5ef46..e19e1878f3 100644 > --- a/drivers/common/idpf/idpf_common_rxtx.h > +++ b/drivers/common/idpf/idpf_common_rxtx.h > @@ -306,5 +306,9 @@ __rte_internal > uint16_t idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, > struct rte_mbuf **rx_pkts, > uint16_t nb_pkts); > +__rte_internal > +uint16_t idpf_dp_singleq_xmit_pkts_avx2(void *tx_queue, > + struct rte_mbuf **tx_pkts, > + uint16_t nb_pkts); > > #endif /* _IDPF_COMMON_RXTX_H_ */ > diff --git a/drivers/common/idpf/idpf_common_rxtx_avx2.c > b/drivers/common/idpf/idpf_common_rxtx_avx2.c > index 277b2a9469..7d292ff19e 100644 > --- a/drivers/common/idpf/idpf_common_rxtx_avx2.c > +++ b/drivers/common/idpf/idpf_common_rxtx_avx2.c > @@ -478,3 +478,227 @@ idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct > rte_mbuf **rx_pkts, uint16 > { > return _idpf_singleq_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts); > } > +static __rte_always_inline void > +idpf_tx_backlog_entry(struct idpf_tx_entry *txep, > + struct rte_mbuf **tx_pkts, uint16_t nb_pkts) > +{ > + int i; > + > + for (i = 0; i < (int)nb_pkts; ++i) > + txep[i].mbuf = tx_pkts[i]; > +} Can idpf driver switch to using ci_tx_entry (and ci_tx_entry_vec) from the intel/common/tx.h header? Then we can drop this code and just use ct_tx_backlog_entry and similar functions. > + > +static __rte_always_inline int > +idpf_singleq_tx_free_bufs_vec(struct idpf_tx_queue *txq) > +{ > + struct idpf_tx_entry *txep; > + uint32_t n; > + uint32_t i; > + int nb_free = 0; > + struct rte_mbuf *m, *free[txq->rs_thresh]; > + > + /* check DD bits on threshold descriptor */ > + if ((txq->tx_ring[txq->next_dd].qw1 & > + rte_cpu_to_le_64(IDPF_TXD_QW1_DTYPE_M)) != > + rte_cpu_to_le_64(IDPF_TX_DESC_DTYPE_DESC_DONE)) > + return 0; > + > + n = txq->rs_thresh; > + > + /* first buffer to free from S/W ring is at index > + * next_dd - (rs_thresh-1) > + */ > + txep = &txq->sw_ring[txq->next_dd - (n - 1)]; > + m = rte_pktmbuf_prefree_seg(txep[0].mbuf); > + if (likely(m)) { > + free[0] = m; > + nb_free = 1; > + for (i = 1; i < n; i++) { > + m = rte_pktmbuf_prefree_seg(txep[i].mbuf); > + if (likely(m)) { > + if (likely(m->pool == free[0]->pool)) { > + free[nb_free++] = m; > + } else { > + rte_mempool_put_bulk(free[0]->pool, > + (void *)free, > + nb_free); > + free[0] = m; > + nb_free = 1; > + } > + } > + } > + rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); > + } else { > + for (i = 1; i < n; i++) { > + m = rte_pktmbuf_prefree_seg(txep[i].mbuf); > + if (m) > + rte_mempool_put(m->pool, m); > + } > + } > + > + /* buffers were freed, update counters */ > + txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh); > + txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh); > + if (txq->next_dd >= txq->nb_tx_desc) > + txq->next_dd = (uint16_t)(txq->rs_thresh - 1); > + > + return txq->rs_thresh; > +} Similarly, this looks the same as ci_tx_free_bufs_vec. > + > +static inline void > +idpf_singleq_vtx1(volatile struct idpf_base_tx_desc *txdp, > + struct rte_mbuf *pkt, uint64_t flags) > +{ > + uint64_t high_qw = > + (IDPF_TX_DESC_DTYPE_DATA | > + ((uint64_t)flags << IDPF_TXD_QW1_CMD_S) | > + ((uint64_t)pkt->data_len << IDPF_TXD_QW1_TX_BUF_SZ_S)); > + > + __m128i descriptor = _mm_set_epi64x(high_qw, > + pkt->buf_iova + pkt->data_off); > + _mm_store_si128(RTE_CAST_PTR(__m128i *, txdp), descriptor); > +} > + > +static inline void > +idpf_singleq_vtx(volatile struct idpf_base_tx_desc *txdp, > + struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) > +{ > + const uint64_t hi_qw_tmpl = (IDPF_TX_DESC_DTYPE_DATA | > + ((uint64_t)flags << IDPF_TXD_QW1_CMD_S)); > + > + /* if unaligned on 32-bit boundary, do one to align */ > + if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { > + idpf_singleq_vtx1(txdp, *pkt, flags); > + nb_pkts--, txdp++, pkt++; > + } > + > + /* do two at a time while possible, in bursts */ > + for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { > + uint64_t hi_qw3 = > + hi_qw_tmpl | > + ((uint64_t)pkt[3]->data_len << > + IDPF_TXD_QW1_TX_BUF_SZ_S); > + uint64_t hi_qw2 = > + hi_qw_tmpl | > + ((uint64_t)pkt[2]->data_len << > + IDPF_TXD_QW1_TX_BUF_SZ_S); > + uint64_t hi_qw1 = > + hi_qw_tmpl | > + ((uint64_t)pkt[1]->data_len << > + IDPF_TXD_QW1_TX_BUF_SZ_S); > + uint64_t hi_qw0 = > + hi_qw_tmpl | > + ((uint64_t)pkt[0]->data_len << > + IDPF_TXD_QW1_TX_BUF_SZ_S); > + > + __m256i desc2_3 = > + _mm256_set_epi64x > + (hi_qw3, > + pkt[3]->buf_iova + pkt[3]->data_off, > + hi_qw2, > + pkt[2]->buf_iova + pkt[2]->data_off); > + __m256i desc0_1 = > + _mm256_set_epi64x > + (hi_qw1, > + pkt[1]->buf_iova + pkt[1]->data_off, > + hi_qw0, > + pkt[0]->buf_iova + pkt[0]->data_off); > + _mm256_store_si256(RTE_CAST_PTR(__m256i *, txdp + 2), desc2_3); > + _mm256_store_si256(RTE_CAST_PTR(__m256i *, txdp), desc0_1); > + } > + > + /* do any last ones */ > + while (nb_pkts) { > + idpf_singleq_vtx1(txdp, *pkt, flags); > + txdp++, pkt++, nb_pkts--; > + } > +} > + > +static inline uint16_t > +idpf_singleq_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf > **tx_pkts, > + uint16_t nb_pkts) > +{ > + struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue; > + volatile struct idpf_base_tx_desc *txdp; > + struct idpf_tx_entry *txep; > + uint16_t n, nb_commit, tx_id; > + uint64_t flags = IDPF_TX_DESC_CMD_EOP; > + uint64_t rs = IDPF_TX_DESC_CMD_RS | flags; > + > + /* cross rx_thresh boundary is not allowed */ > + nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); > + > + if (txq->nb_free < txq->free_thresh) > + idpf_singleq_tx_free_bufs_vec(txq); > + > + nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); > + if (unlikely(nb_pkts == 0)) > + return 0; > + > + tx_id = txq->tx_tail; > + txdp = &txq->tx_ring[tx_id]; > + txep = &txq->sw_ring[tx_id]; > + > + txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); > + > + n = (uint16_t)(txq->nb_tx_desc - tx_id); > + if (nb_commit >= n) { > + idpf_tx_backlog_entry(txep, tx_pkts, n); > + > + idpf_singleq_vtx(txdp, tx_pkts, n - 1, flags); > + tx_pkts += (n - 1); > + txdp += (n - 1); > + > + idpf_singleq_vtx1(txdp, *tx_pkts++, rs); > + > + nb_commit = (uint16_t)(nb_commit - n); > + > + tx_id = 0; > + txq->next_rs = (uint16_t)(txq->rs_thresh - 1); > + > + /* avoid reach the end of ring */ > + txdp = &txq->tx_ring[tx_id]; > + txep = &txq->sw_ring[tx_id]; > + } > + > + idpf_tx_backlog_entry(txep, tx_pkts, nb_commit); > + > + idpf_singleq_vtx(txdp, tx_pkts, nb_commit, flags); > + > + tx_id = (uint16_t)(tx_id + nb_commit); > + if (tx_id > txq->next_rs) { > + txq->tx_ring[txq->next_rs].qw1 |= > + rte_cpu_to_le_64(((uint64_t)IDPF_TX_DESC_CMD_RS) << > + IDPF_TXD_QW1_CMD_S); > + txq->next_rs = > + (uint16_t)(txq->next_rs + txq->rs_thresh); > + } > + > + txq->tx_tail = tx_id; > + > + IDPF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); > + > + return nb_pkts; > +} > + > +uint16_t > +idpf_dp_singleq_xmit_pkts_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, > + uint16_t nb_pkts) > +{ > + uint16_t nb_tx = 0; > + struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue; > + > + while (nb_pkts) { > + uint16_t ret, num; > + > + num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); > + ret = idpf_singleq_xmit_fixed_burst_vec_avx2(tx_queue, > &tx_pkts[nb_tx], > + num); > + nb_tx += ret; > + nb_pkts -= ret; > + if (ret < num) > + break; > + } > + > + return nb_tx; > +} > diff --git a/drivers/common/idpf/version.map b/drivers/common/idpf/version.map > index 22b689f5f5..0557321963 100644 > --- a/drivers/common/idpf/version.map > +++ b/drivers/common/idpf/version.map > @@ -10,6 +10,7 @@ INTERNAL { > idpf_dp_singleq_recv_pkts_avx512; > idpf_dp_singleq_recv_scatter_pkts; > idpf_dp_singleq_xmit_pkts; > + idpf_dp_singleq_xmit_pkts_avx2; > idpf_dp_singleq_xmit_pkts_avx512; > idpf_dp_splitq_recv_pkts; > idpf_dp_splitq_recv_pkts_avx512; > diff --git a/drivers/net/intel/idpf/idpf_rxtx.c > b/drivers/net/intel/idpf/idpf_rxtx.c > index a8377d3fee..0c3ecd2765 100644 > --- a/drivers/net/intel/idpf/idpf_rxtx.c > +++ b/drivers/net/intel/idpf/idpf_rxtx.c > @@ -887,6 +887,11 @@ idpf_set_tx_function(struct rte_eth_dev *dev) > if (idpf_tx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH && > rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { > vport->tx_vec_allowed = true; > + > + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 && > + rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) > + vport->tx_use_avx2 = true; > + > if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512) > #ifdef CC_AVX512_SUPPORT > { > @@ -946,6 +951,14 @@ idpf_set_tx_function(struct rte_eth_dev *dev) > return; > } > #endif /* CC_AVX512_SUPPORT */ > + if (vport->tx_use_avx2) { > + PMD_DRV_LOG(NOTICE, > + "Using Single AVX2 Vector Tx (port > %d).", > + dev->data->port_id); > + dev->tx_pkt_burst = > idpf_dp_singleq_xmit_pkts_avx2; > + dev->tx_pkt_prepare = idpf_dp_prep_pkts; > + return; > + } > } > PMD_DRV_LOG(NOTICE, > "Using Single Scalar Tx (port %d).", > -- > 2.34.1 >