In case some CPUs don't support AVX512. Enable AVX2 for them to
get better per-core performance.

Signed-off-by: Wenzhuo Lu <wenzhuo...@intel.com>
---
 drivers/common/idpf/idpf_common_device.h    |   1 +
 drivers/common/idpf/idpf_common_rxtx.h      |   4 +
 drivers/common/idpf/idpf_common_rxtx_avx2.c | 609 ++++++++++++++++++++
 drivers/common/idpf/meson.build             |  16 +
 drivers/common/idpf/version.map             |   1 +
 drivers/net/idpf/idpf_rxtx.c                |  12 +
 6 files changed, 643 insertions(+)
 create mode 100644 drivers/common/idpf/idpf_common_rxtx_avx2.c

diff --git a/drivers/common/idpf/idpf_common_device.h 
b/drivers/common/idpf/idpf_common_device.h
index f767ea7cec..afe3d48798 100644
--- a/drivers/common/idpf/idpf_common_device.h
+++ b/drivers/common/idpf/idpf_common_device.h
@@ -114,6 +114,7 @@ struct idpf_vport {
 
        bool rx_vec_allowed;
        bool tx_vec_allowed;
+       bool rx_use_avx2;
        bool rx_use_avx512;
        bool tx_use_avx512;
 
diff --git a/drivers/common/idpf/idpf_common_rxtx.h 
b/drivers/common/idpf/idpf_common_rxtx.h
index b49b1ed737..4d64063718 100644
--- a/drivers/common/idpf/idpf_common_rxtx.h
+++ b/drivers/common/idpf/idpf_common_rxtx.h
@@ -302,5 +302,9 @@ uint16_t idpf_dp_splitq_xmit_pkts_avx512(void *tx_queue, 
struct rte_mbuf **tx_pk
 __rte_internal
 uint16_t idpf_dp_singleq_recv_scatter_pkts(void *rx_queue, struct rte_mbuf 
**rx_pkts,
                          uint16_t nb_pkts);
+__rte_internal
+uint16_t idpf_dp_singleq_recv_pkts_avx2(void *rx_queue,
+                                       struct rte_mbuf **rx_pkts,
+                                       uint16_t nb_pkts);
 
 #endif /* _IDPF_COMMON_RXTX_H_ */
diff --git a/drivers/common/idpf/idpf_common_rxtx_avx2.c 
b/drivers/common/idpf/idpf_common_rxtx_avx2.c
new file mode 100644
index 0000000000..0403cf118f
--- /dev/null
+++ b/drivers/common/idpf/idpf_common_rxtx_avx2.c
@@ -0,0 +1,609 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Intel Corporation
+ */
+
+#include <rte_vect.h>
+
+#include "idpf_common_rxtx.h"
+#include "idpf_common_device.h"
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+static __rte_always_inline void
+idpf_singleq_rx_rearm(struct idpf_rx_queue *rxq)
+{
+       int i;
+       uint16_t rx_id;
+       volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
+       struct rte_mbuf **rxep = &rxq->sw_ring[rxq->rxrearm_start];
+
+       rxdp += rxq->rxrearm_start;
+
+       /* Pull 'n' more MBUFs into the software ring */
+       if (rte_mempool_get_bulk(rxq->mp,
+                                (void *)rxep,
+                                IDPF_RXQ_REARM_THRESH) < 0) {
+               if (rxq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
+                   rxq->nb_rx_desc) {
+                       __m128i dma_addr0;
+
+                       dma_addr0 = _mm_setzero_si128();
+                       for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
+                               rxep[i] = &rxq->fake_mbuf;
+                               _mm_store_si128((__m128i *)&rxdp[i].read,
+                                               dma_addr0);
+                       }
+               }
+               __atomic_fetch_add(&rxq->rx_stats.mbuf_alloc_failed,
+                                  IDPF_RXQ_REARM_THRESH, __ATOMIC_RELAXED);
+
+               return;
+       }
+
+       struct rte_mbuf *mb0, *mb1;
+       __m128i dma_addr0, dma_addr1;
+       __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
+                       RTE_PKTMBUF_HEADROOM);
+       /* Initialize the mbufs in vector, process 2 mbufs in one loop */
+       for (i = 0; i < IDPF_RXQ_REARM_THRESH; i += 2, rxep += 2) {
+               __m128i vaddr0, vaddr1;
+
+               mb0 = rxep[0];
+               mb1 = rxep[1];
+
+               /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
+                               offsetof(struct rte_mbuf, buf_addr) + 8);
+               vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+               vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+
+               /* convert pa to dma_addr hdr/data */
+               dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
+               dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
+
+               /* add headroom to pa values */
+               dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
+               dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
+
+               /* flush desc with pa dma_addr */
+               _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
+               _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
+       }
+
+       rxq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
+       if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+               rxq->rxrearm_start = 0;
+
+       rxq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
+
+       rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+       /* Update the tail pointer on the NIC */
+       IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+static inline __m256i
+idpf_flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7)
+{
+#define FDID_MIS_MAGIC 0xFFFFFFFF
+       RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
+       RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
+       const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR |
+                       RTE_MBUF_F_RX_FDIR_ID);
+       /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
+       const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
+       __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
+                       fdir_mis_mask);
+       /* this XOR op results to bit-reverse the fdir_mask */
+       fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
+       const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
+
+       return fdir_flags;
+}
+
+static inline uint16_t
+_idpf_singleq_recv_raw_pkts_vec_avx2(struct idpf_rx_queue *rxq, struct 
rte_mbuf **rx_pkts,
+                                    uint16_t nb_pkts, uint8_t *split_packet)
+{
+#define IDPF_DESCS_PER_LOOP_AVX 8
+
+       const uint32_t *ptype_tbl = rxq->adapter->ptype_tbl;
+       const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+                       0, rxq->mbuf_initializer);
+       struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+       volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
+       const int avx_aligned = ((rxq->rx_tail & 1) == 0);
+
+       rxdp += rxq->rx_tail;
+
+       rte_prefetch0(rxdp);
+
+       /* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */
+       nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX);
+
+       /* See if we need to rearm the RX queue - gives the prefetch a bit
+        * of time to act
+        */
+       if (rxq->rxrearm_nb > IDPF_RXQ_REARM_THRESH)
+               idpf_singleq_rx_rearm(rxq);
+
+       /* Before we start moving massive data around, check to see if
+        * there is actually a packet available
+        */
+       if (!(rxdp->flex_nic_wb.status_error0 &
+                       rte_cpu_to_le_32(1 << 
VIRTCHNL2_RX_FLEX_DESC_STATUS0_DD_S)))
+               return 0;
+
+       /* 8 packets DD mask, LSB in each 32-bit value */
+       const __m256i dd_check = _mm256_set1_epi32(1);
+
+       /* 8 packets EOP mask, second-LSB in each 32-bit value */
+       const __m256i eop_check = _mm256_slli_epi32(dd_check,
+                       VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S);
+
+       /* mask to shuffle from desc. to mbuf (2 descriptors)*/
+       const __m256i shuf_msk =
+               _mm256_set_epi8
+                       (/* first descriptor */
+                        0xFF, 0xFF,
+                        0xFF, 0xFF,    /* rss hash parsed separately */
+                        11, 10,        /* octet 10~11, 16 bits vlan_macip */
+                        5, 4,          /* octet 4~5, 16 bits data_len */
+                        0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
+                        5, 4,          /* octet 4~5, 16 bits pkt_len */
+                        0xFF, 0xFF,    /* pkt_type set as unknown */
+                        0xFF, 0xFF,    /*pkt_type set as unknown */
+                        /* second descriptor */
+                        0xFF, 0xFF,
+                        0xFF, 0xFF,    /* rss hash parsed separately */
+                        11, 10,        /* octet 10~11, 16 bits vlan_macip */
+                        5, 4,          /* octet 4~5, 16 bits data_len */
+                        0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
+                        5, 4,          /* octet 4~5, 16 bits pkt_len */
+                        0xFF, 0xFF,    /* pkt_type set as unknown */
+                        0xFF, 0xFF     /*pkt_type set as unknown */
+                       );
+       /**
+        * compile-time check the above crc and shuffle layout is correct.
+        * NOTE: the first field (lowest address) is given last in set_epi
+        * calls above.
+        */
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+       /* Status/Error flag masks */
+       /**
+        * mask everything except Checksum Reports, RSS indication
+        * and VLAN indication.
+        * bit6:4 for IP/L4 checksum errors.
+        * bit12 is for RSS indication.
+        * bit13 is for VLAN indication.
+        */
+       const __m256i flags_mask =
+                _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
+       /**
+        * data to be shuffled by the result of the flags mask shifted by 4
+        * bits.  This gives use the l3_l4 flags.
+        */
+       const __m256i l3_l4_flags_shuf =
+               _mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
+                RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 
1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 
1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               /**
+                * second 128-bits
+                * shift right 20 bits to use the low two bits to indicate
+                * outer checksum status
+                * shift right 1 bit to make sure it not exceed 255
+                */
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 
1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 
1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_BAD |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+               (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | 
RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+                RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
+       const __m256i cksum_mask =
+                _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
+                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
+                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+                                  RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK);
+       /**
+        * data to be shuffled by result of flag mask, shifted down 12.
+        * If RSS(bit12)/VLAN(bit13) are set,
+        * shuffle moves appropriate flags in place.
+        */
+       const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | 
RTE_MBUF_F_RX_VLAN_STRIPPED,
+                       RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+                       RTE_MBUF_F_RX_RSS_HASH, 0,
+                       /* end up 128-bits */
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | 
RTE_MBUF_F_RX_VLAN_STRIPPED,
+                       RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+                       RTE_MBUF_F_RX_RSS_HASH, 0);
+
+       RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
+
+       uint16_t i, received;
+
+       for (i = 0, received = 0; i < nb_pkts;
+            i += IDPF_DESCS_PER_LOOP_AVX,
+            rxdp += IDPF_DESCS_PER_LOOP_AVX) {
+               /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+               _mm256_storeu_si256((void *)&rx_pkts[i],
+                                   _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+               _mm256_storeu_si256
+                       ((void *)&rx_pkts[i + 4],
+                        _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+               __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+
+               const __m128i raw_desc7 =
+                       _mm_load_si128((void *)(rxdp + 7));
+               rte_compiler_barrier();
+               const __m128i raw_desc6 =
+                       _mm_load_si128((void *)(rxdp + 6));
+               rte_compiler_barrier();
+               const __m128i raw_desc5 =
+                       _mm_load_si128((void *)(rxdp + 5));
+               rte_compiler_barrier();
+               const __m128i raw_desc4 =
+                       _mm_load_si128((void *)(rxdp + 4));
+               rte_compiler_barrier();
+               const __m128i raw_desc3 =
+                       _mm_load_si128((void *)(rxdp + 3));
+               rte_compiler_barrier();
+               const __m128i raw_desc2 =
+                       _mm_load_si128((void *)(rxdp + 2));
+               rte_compiler_barrier();
+               const __m128i raw_desc1 =
+                       _mm_load_si128((void *)(rxdp + 1));
+               rte_compiler_barrier();
+               const __m128i raw_desc0 =
+                       _mm_load_si128((void *)(rxdp + 0));
+
+               raw_desc6_7 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc6),
+                                raw_desc7, 1);
+               raw_desc4_5 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc4),
+                                raw_desc5, 1);
+               raw_desc2_3 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc2),
+                                raw_desc3, 1);
+               raw_desc0_1 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc0),
+                                raw_desc1, 1);
+
+               if (split_packet) {
+                       int j;
+
+                       for (j = 0; j < IDPF_DESCS_PER_LOOP_AVX; j++)
+                               rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+               }
+
+               /**
+                * convert descriptors 4-7 into mbufs, re-arrange fields.
+                * Then write into the mbuf.
+                */
+               __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
+               __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
+
+               /**
+                * to get packet types, ptype is located in bit16-25
+                * of each 128bits
+                */
+               const __m256i ptype_mask =
+                       _mm256_set1_epi16(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M);
+               const __m256i ptypes6_7 =
+                       _mm256_and_si256(raw_desc6_7, ptype_mask);
+               const __m256i ptypes4_5 =
+                       _mm256_and_si256(raw_desc4_5, ptype_mask);
+               const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
+               const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
+               const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
+               const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
+
+               mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
+               mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
+               mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
+               mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
+               /* merge the status bits into one register */
+               const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
+                               raw_desc4_5);
+
+               /**
+                * convert descriptors 0-3 into mbufs, re-arrange fields.
+                * Then write into the mbuf.
+                */
+               __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
+               __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
+
+               /**
+                * to get packet types, ptype is located in bit16-25
+                * of each 128bits
+                */
+               const __m256i ptypes2_3 =
+                       _mm256_and_si256(raw_desc2_3, ptype_mask);
+               const __m256i ptypes0_1 =
+                       _mm256_and_si256(raw_desc0_1, ptype_mask);
+               const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
+               const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
+               const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
+               const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
+
+               mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
+               mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
+               mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
+               mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
+               /* merge the status bits into one register */
+               const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
+                                                               raw_desc0_1);
+
+               /**
+                * take the two sets of status bits and merge to one
+                * After merge, the packets status flags are in the
+                * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+                */
+               __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
+                                                         status0_3);
+
+               /* now do flag manipulation */
+
+               /* get only flag/error bits we want */
+               const __m256i flag_bits =
+                       _mm256_and_si256(status0_7, flags_mask);
+               /**
+                * l3_l4_error flags, shuffle, then shift to correct adjustment
+                * of flags in flags_shuf, and finally mask out extra bits
+                */
+               __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+                               _mm256_srli_epi32(flag_bits, 4));
+               l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+
+               __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
+               __m256i l4_outer_flags =
+                               _mm256_and_si256(l3_l4_flags, l4_outer_mask);
+               l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
+
+               __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
+               l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
+               l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
+               l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+               /* set rss and vlan flags */
+               const __m256i rss_vlan_flag_bits =
+                       _mm256_srli_epi32(flag_bits, 12);
+               const __m256i rss_vlan_flags =
+                       _mm256_shuffle_epi8(rss_vlan_flags_shuf,
+                                           rss_vlan_flag_bits);
+
+               /* merge flags */
+               __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+                               rss_vlan_flags);
+
+               /**
+                * At this point, we have the 8 sets of flags in the low 16-bits
+                * of each 32-bit value in vlan0.
+                * We want to extract these, and merge them with the mbuf init
+                * data so we can do a single write to the mbuf to set the flags
+                * and all the other initialization fields. Extracting the
+                * appropriate flags means that we have to do a shift and blend
+                * for each mbuf before we do the write. However, we can also
+                * add in the previously computed rx_descriptor fields to
+                * make a single 256-bit write per mbuf
+                */
+               /* check the structure matches expectations */
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+                                offsetof(struct rte_mbuf, rearm_data) + 8);
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+                                RTE_ALIGN(offsetof(struct rte_mbuf,
+                                                   rearm_data),
+                                          16));
+               /* build up data and do writes */
+               __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+                       rearm6, rearm7;
+               rearm6 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(mbuf_flags, 8),
+                                           0x04);
+               rearm4 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(mbuf_flags, 4),
+                                           0x04);
+               rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+               rearm0 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_srli_si256(mbuf_flags, 4),
+                                           0x04);
+               /* permute to add in the rx_descriptor e.g. rss fields */
+               rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+               rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+               rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+               rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+               /* write to mbuf */
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+                                   rearm6);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+                                   rearm4);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+                                   rearm2);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+                                   rearm0);
+
+               /* repeat for the odd mbufs */
+               const __m256i odd_flags =
+                       _mm256_castsi128_si256
+                               (_mm256_extracti128_si256(mbuf_flags, 1));
+               rearm7 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(odd_flags, 8),
+                                           0x04);
+               rearm5 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(odd_flags, 4),
+                                           0x04);
+               rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+               rearm1 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_srli_si256(odd_flags, 4),
+                                           0x04);
+               /* since odd mbufs are already in hi 128-bits use blend */
+               rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+               rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+               rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+               rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+               /* again write to mbufs */
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+                                   rearm7);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+                                   rearm5);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+                                   rearm3);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+                                   rearm1);
+
+               /* extract and record EOP bit */
+               if (split_packet) {
+                       const __m128i eop_mask =
+                               _mm_set1_epi16(1 << 
VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S);
+                       const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+                                                                    eop_check);
+                       /* pack status bits into a single 128-bit register */
+                       const __m128i eop_bits =
+                               _mm_packus_epi32
+                                       (_mm256_castsi256_si128(eop_bits256),
+                                        _mm256_extractf128_si256(eop_bits256,
+                                                                 1));
+                       /**
+                        * flip bits, and mask out the EOP bit, which is now
+                        * a split-packet bit i.e. !EOP, rather than EOP one.
+                        */
+                       __m128i split_bits = _mm_andnot_si128(eop_bits,
+                                       eop_mask);
+                       /**
+                        * eop bits are out of order, so we need to shuffle them
+                        * back into order again. In doing so, only use low 8
+                        * bits, which acts like another pack instruction
+                        * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+                        * [Since we use epi8, the 16-bit positions are
+                        * multiplied by 2 in the eop_shuffle value.]
+                        */
+                       __m128i eop_shuffle =
+                               _mm_set_epi8(/* zero hi 64b */
+                                            0xFF, 0xFF, 0xFF, 0xFF,
+                                            0xFF, 0xFF, 0xFF, 0xFF,
+                                            /* move values to lo 64b */
+                                            8, 0, 10, 2,
+                                            12, 4, 14, 6);
+                       split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+                       *(uint64_t *)split_packet =
+                               _mm_cvtsi128_si64(split_bits);
+                       split_packet += IDPF_DESCS_PER_LOOP_AVX;
+               }
+
+               /* perform dd_check */
+               status0_7 = _mm256_and_si256(status0_7, dd_check);
+               status0_7 = _mm256_packs_epi32(status0_7,
+                                              _mm256_setzero_si256());
+
+               uint64_t burst = __builtin_popcountll
+                                       (_mm_cvtsi128_si64
+                                               (_mm256_extracti128_si256
+                                                       (status0_7, 1)));
+               burst += __builtin_popcountll
+                               (_mm_cvtsi128_si64
+                                       (_mm256_castsi256_si128(status0_7)));
+               received += burst;
+               if (burst != IDPF_DESCS_PER_LOOP_AVX)
+                       break;
+       }
+
+       /* update tail pointers */
+       rxq->rx_tail += received;
+       rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+       if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+               rxq->rx_tail--;
+               received--;
+       }
+       rxq->rxrearm_nb += received;
+       return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < IDPF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+                              uint16_t nb_pkts)
+{
+       return _idpf_singleq_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, 
NULL);
+}
diff --git a/drivers/common/idpf/meson.build b/drivers/common/idpf/meson.build
index 80c8906f80..6ab1c8175d 100644
--- a/drivers/common/idpf/meson.build
+++ b/drivers/common/idpf/meson.build
@@ -16,6 +16,22 @@ sources = files(
 )
 
 if arch_subdir == 'x86'
+    # compile AVX2 version if either:
+    # a. we have AVX supported in minimum instruction set baseline
+    # b. it's not minimum instruction set, but supported by compiler
+    if cc.get_define('__AVX2__', args: machine_args) != ''
+        cflags += ['-DCC_AVX2_SUPPORT']
+        sources += files('idpf_common_rxtx_avx2.c')
+    elif cc.has_argument('-mavx2')
+        cflags += ['-DCC_AVX2_SUPPORT']
+        idpf_avx2_lib = static_library('idpf_avx2_lib',
+                'idpf_common_rxtx_avx2.c',
+                dependencies: [static_rte_ethdev, static_rte_kvargs, 
static_rte_hash],
+                include_directories: includes,
+                c_args: [cflags, '-mavx2'])
+        objs += idpf_avx2_lib.extract_objects('idpf_common_rxtx_avx2.c')
+    endif
+
     idpf_avx512_cpu_support = (
         cc.get_define('__AVX512F__', args: machine_args) != '' and
         cc.get_define('__AVX512BW__', args: machine_args) != '' and
diff --git a/drivers/common/idpf/version.map b/drivers/common/idpf/version.map
index 0729f6b912..4510aae6b3 100644
--- a/drivers/common/idpf/version.map
+++ b/drivers/common/idpf/version.map
@@ -14,6 +14,7 @@ INTERNAL {
        idpf_dp_splitq_recv_pkts_avx512;
        idpf_dp_splitq_xmit_pkts;
        idpf_dp_splitq_xmit_pkts_avx512;
+       idpf_dp_singleq_recv_pkts_avx2;
 
        idpf_qc_rx_thresh_check;
        idpf_qc_rx_queue_release;
diff --git a/drivers/net/idpf/idpf_rxtx.c b/drivers/net/idpf/idpf_rxtx.c
index 64f2235580..b155c9ccd1 100644
--- a/drivers/net/idpf/idpf_rxtx.c
+++ b/drivers/net/idpf/idpf_rxtx.c
@@ -772,6 +772,11 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
            rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
                vport->rx_vec_allowed = true;
 
+               if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+                    rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
+                   rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
+                       vport->rx_use_avx2 = true;
+
                if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
 #ifdef CC_AVX512_SUPPORT
                        if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 
&&
@@ -823,6 +828,13 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
                                return;
                        }
 #endif /* CC_AVX512_SUPPORT */
+                       if (vport->rx_use_avx2) {
+                               PMD_DRV_LOG(NOTICE,
+                                           "Using Single AVX2 Vector Rx (port 
%d).",
+                                           dev->data->port_id);
+                               dev->rx_pkt_burst = 
idpf_dp_singleq_recv_pkts_avx2;
+                               return;
+                       }
                }
 
                if (dev->data->scattered_rx) {
-- 
2.25.1

Reply via email to