On 10/1/20 5:14 AM, Nicolas Chautru wrote:
> Adding function to create and configure queues for
> the device. Still no capability.
>
> Signed-off-by: Nicolas Chautru <nicolas.chau...@intel.com>
> Reviewed-by: Rosen Xu <rosen...@intel.com>
> Acked-by: Liu Tianjiao <tianjiao....@intel.com>
> ---
> drivers/baseband/acc100/rte_acc100_pmd.c | 438
> ++++++++++++++++++++++++++++++-
> drivers/baseband/acc100/rte_acc100_pmd.h | 45 ++++
> 2 files changed, 482 insertions(+), 1 deletion(-)
>
> diff --git a/drivers/baseband/acc100/rte_acc100_pmd.c
> b/drivers/baseband/acc100/rte_acc100_pmd.c
> index 98a17b3..709a7af 100644
> --- a/drivers/baseband/acc100/rte_acc100_pmd.c
> +++ b/drivers/baseband/acc100/rte_acc100_pmd.c
> @@ -26,6 +26,22 @@
> RTE_LOG_REGISTER(acc100_logtype, pmd.bb.acc100, NOTICE);
> #endif
>
> +/* Write to MMIO register address */
> +static inline void
> +mmio_write(void *addr, uint32_t value)
> +{
> + *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
> +}
> +
> +/* Write a register of a ACC100 device */
> +static inline void
> +acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t payload)
> +{
> + void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
> + mmio_write(reg_addr, payload);
> + usleep(ACC100_LONG_WAIT);
Is it really needed to sleep after the MMIO write access?
> +}
> +
> /* Read a register of a ACC100 device */
> static inline uint32_t
> acc100_reg_read(struct acc100_device *d, uint32_t offset)
> @@ -36,6 +52,22 @@
> return rte_le_to_cpu_32(ret);
> }
>
> +/* Basic Implementation of Log2 for exact 2^N */
> +static inline uint32_t
> +log2_basic(uint32_t value)
> +{
> + return (value == 0) ? 0 : rte_bsf32(value);
> +}
> +
> +/* Calculate memory alignment offset assuming alignment is 2^N */
> +static inline uint32_t
> +calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
> +{
> + rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
> + return (uint32_t)(alignment -
> + (unaligned_phy_mem & (alignment-1)));
> +}
> +
> /* Calculate the offset of the enqueue register */
> static inline uint32_t
> queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
> @@ -208,10 +240,411 @@
> acc100_conf->q_dl_5g.aq_depth_log2);
> }
>
> +static void
> +free_base_addresses(void **base_addrs, int size)
> +{
> + int i;
> + for (i = 0; i < size; i++)
> + rte_free(base_addrs[i]);
> +}
> +
> +static inline uint32_t
> +get_desc_len(void)
> +{
> + return sizeof(union acc100_dma_desc);
> +}
> +
> +/* Allocate the 2 * 64MB block for the sw rings */
> +static int
> +alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
> + int socket)
> +{
> + uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
> + d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
> + 2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
> + if (d->sw_rings_base == NULL) {
> + rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
> + dev->device->driver->name,
> + dev->data->dev_id);
> + return -ENOMEM;
> + }
> + memset(d->sw_rings_base, 0, ACC100_SIZE_64MBYTE);
Having used zmalloc, the memset looks overkill. Also, it does not clear
all the allocated are, don't know if this is expected.
> + uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
> + d->sw_rings_base, ACC100_SIZE_64MBYTE);
> + d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
> + d->sw_rings_phys = rte_malloc_virt2iova(d->sw_rings_base) +
> + next_64mb_align_offset;
sw_rings_phys should be renamed to sw_rings_iova, as it could be a VA if
IOVA_AS_VA more is used.
> + d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
> + d->sw_ring_max_depth = d->sw_ring_size / get_desc_len();
d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
> +
> + return 0;
> +}
> +
> +/* Attempt to allocate minimised memory space for sw rings */
> +static void
> +alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
> + uint16_t num_queues, int socket)
> +{
> + rte_iova_t sw_rings_base_phy, next_64mb_align_addr_phy;
Same comment regarding phys vs. iova in this function.
> + uint32_t next_64mb_align_offset;
> + rte_iova_t sw_ring_phys_end_addr;
> + void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
> + void *sw_rings_base;
> + int i = 0;
> + uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
> + uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
> +
> + /* Find an aligned block of memory to store sw rings */
> + while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
> + /*
> + * sw_ring allocated memory is guaranteed to be aligned to
> + * q_sw_ring_size at the condition that the requested size is
> + * less than the page size
> + */
> + sw_rings_base = rte_zmalloc_socket(
> + dev->device->driver->name,
> + dev_sw_ring_size, q_sw_ring_size, socket);
> +
> + if (sw_rings_base == NULL) {
> + rte_bbdev_log(ERR,
> + "Failed to allocate memory for %s:%u",
> + dev->device->driver->name,
> + dev->data->dev_id);
> + break;
> + }
> +
> + sw_rings_base_phy = rte_malloc_virt2iova(sw_rings_base);
> + next_64mb_align_offset = calc_mem_alignment_offset(
> + sw_rings_base, ACC100_SIZE_64MBYTE);
> + next_64mb_align_addr_phy = sw_rings_base_phy +
> + next_64mb_align_offset;
> + sw_ring_phys_end_addr = sw_rings_base_phy + dev_sw_ring_size;
> +
> + /* Check if the end of the sw ring memory block is before the
> + * start of next 64MB aligned mem address
> + */
> + if (sw_ring_phys_end_addr < next_64mb_align_addr_phy) {
> + d->sw_rings_phys = sw_rings_base_phy;
> + d->sw_rings = sw_rings_base;
> + d->sw_rings_base = sw_rings_base;
> + d->sw_ring_size = q_sw_ring_size;
> + d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
> + break;
> + }
> + /* Store the address of the unaligned mem block */
> + base_addrs[i] = sw_rings_base;
> + i++;
> + }
> +
> + /* Free all unaligned blocks of mem allocated in the loop */
> + free_base_addresses(base_addrs, i);
> +}
> +
> +
> +/* Allocate 64MB memory used for all software rings */
> +static int
> +acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int
> socket_id)
> +{
> + uint32_t phys_low, phys_high, payload;
> + struct acc100_device *d = dev->data->dev_private;
> + const struct acc100_registry_addr *reg_addr;
> +
> + if (d->pf_device && !d->acc100_conf.pf_mode_en) {
> + rte_bbdev_log(NOTICE,
> + "%s has PF mode disabled. This PF can't be
> used.",
> + dev->data->name);
> + return -ENODEV;
> + }
> +
> + alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
> +
> + /* If minimal memory space approach failed, then allocate
> + * the 2 * 64MB block for the sw rings
> + */
> + if (d->sw_rings == NULL)
> + alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
> +
> + if (d->sw_rings == NULL) {
> + rte_bbdev_log(NOTICE,
> + "Failure allocating sw_rings memory");
> + return -ENODEV;
> + }
> +
> + /* Configure ACC100 with the base address for DMA descriptor rings
> + * Same descriptor rings used for UL and DL DMA Engines
> + * Note : Assuming only VF0 bundle is used for PF mode
> + */
> + phys_high = (uint32_t)(d->sw_rings_phys >> 32);
> + phys_low = (uint32_t)(d->sw_rings_phys & ~(ACC100_SIZE_64MBYTE-1));
> +
> + /* Choose correct registry addresses for the device type */
> + if (d->pf_device)
> + reg_addr = &pf_reg_addr;
> + else
> + reg_addr = &vf_reg_addr;
> +
> + /* Read the populated cfg from ACC100 registers */
> + fetch_acc100_config(dev);
> +
> + /* Release AXI from PF */
> + if (d->pf_device)
> + acc100_reg_write(d, HWPfDmaAxiControl, 1);
> +
> + acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
> + acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
> + acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
> + acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
> +
> + /*
> + * Configure Ring Size to the max queue ring size
> + * (used for wrapping purpose)
> + */
> + payload = log2_basic(d->sw_ring_size / 64);
> + acc100_reg_write(d, reg_addr->ring_size, payload);
> +
> + /* Configure tail pointer for use when SDONE enabled */
> + d->tail_ptrs = rte_zmalloc_socket(
> + dev->device->driver->name,
> + ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
> + RTE_CACHE_LINE_SIZE, socket_id);
> + if (d->tail_ptrs == NULL) {
> + rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
> + dev->device->driver->name,
> + dev->data->dev_id);
> + rte_free(d->sw_rings);
> + return -ENOMEM;
> + }
> + d->tail_ptr_phys = rte_malloc_virt2iova(d->tail_ptrs);
> +
> + phys_high = (uint32_t)(d->tail_ptr_phys >> 32);
> + phys_low = (uint32_t)(d->tail_ptr_phys);
> + acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
> + acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
> + acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
> + acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
> + acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
> +
> + d->harq_layout = rte_zmalloc_socket("HARQ Layout",
> + ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
> + RTE_CACHE_LINE_SIZE, dev->data->socket_id);
> + if (d->harq_layout == NULL) {
> + rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
> + dev->device->driver->name,
> + dev->data->dev_id);
> + rte_free(d->sw_rings);
> + return -ENOMEM;
> + }
> +
> + /* Mark as configured properly */
> + d->configured = true;
> +
> + rte_bbdev_log_debug(
> + "ACC100 (%s) configured sw_rings = %p, sw_rings_phys =
> %#"
> + PRIx64, dev->data->name, d->sw_rings, d->sw_rings_phys);
> +
> + return 0;
> +}
> +
> /* Free 64MB memory used for software rings */
Seems to be 2x64MB are allocated.
> static int
> -acc100_dev_close(struct rte_bbdev *dev __rte_unused)
> +acc100_dev_close(struct rte_bbdev *dev)
> {
> + struct acc100_device *d = dev->data->dev_private;
> + if (d->sw_rings_base != NULL) {
> + rte_free(d->tail_ptrs);
> + rte_free(d->sw_rings_base);
> + d->sw_rings_base = NULL;
> + }
> + usleep(ACC100_LONG_WAIT);
This sleep looks weird, it would need a comment if it is really needed.
> + return 0;
> +}
> +
> +
> +/**
> + * Report a ACC100 queue index which is free
> + * Return 0 to 16k for a valid queue_idx or -1 when no queue is available
> + * Note : Only supporting VF0 Bundle for PF mode
> + */
> +static int
> +acc100_find_free_queue_idx(struct rte_bbdev *dev,
> + const struct rte_bbdev_queue_conf *conf)
> +{
> + struct acc100_device *d = dev->data->dev_private;
> + int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
> + int acc = op_2_acc[conf->op_type];
> + struct rte_q_topology_t *qtop = NULL;
New line.
> + qtopFromAcc(&qtop, acc, &(d->acc100_conf));
> + if (qtop == NULL)
> + return -1;
> + /* Identify matching QGroup Index which are sorted in priority order */
> + uint16_t group_idx = qtop->first_qgroup_index;
> + group_idx += conf->priority;
> + if (group_idx >= ACC100_NUM_QGRPS ||
> + conf->priority >= qtop->num_qgroups) {
> + rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
> + dev->data->name, conf->priority);
> + return -1;
> + }
> + /* Find a free AQ_idx */
> + uint16_t aq_idx;
> + for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
> + if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
> + /* Mark the Queue as assigned */
> + d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
> + /* Report the AQ Index */
> + return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
> + }
> + }
> + rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
> + dev->data->name, conf->priority);
> + return -1;
> +}
> +
> +/* Setup ACC100 queue */
> +static int
> +acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
> + const struct rte_bbdev_queue_conf *conf)
> +{
> + struct acc100_device *d = dev->data->dev_private;
> + struct acc100_queue *q;
> + int16_t q_idx;
> +
> + /* Allocate the queue data structure. */
> + q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
> + RTE_CACHE_LINE_SIZE, conf->socket);
> + if (q == NULL) {
> + rte_bbdev_log(ERR, "Failed to allocate queue memory");
> + return -ENOMEM;
> + }
> +
> + q->d = d;
> + q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
You might want to ensure d is not NULL before dereferencing it.
> + q->ring_addr_phys = d->sw_rings_phys + (d->sw_ring_size * queue_id);
> +
> + /* Prepare the Ring with default descriptor format */
> + union acc100_dma_desc *desc = NULL;
> + unsigned int desc_idx, b_idx;
> + int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
> + ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
> + ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
> +
> + for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
> + desc = q->ring_addr + desc_idx;
> + desc->req.word0 = ACC100_DMA_DESC_TYPE;
> + desc->req.word1 = 0; /**< Timestamp */
> + desc->req.word2 = 0;
> + desc->req.word3 = 0;
> + uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
> + desc->req.data_ptrs[0].address = q->ring_addr_phys + fcw_offset;
> + desc->req.data_ptrs[0].blen = fcw_len;
> + desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
> + desc->req.data_ptrs[0].last = 0;
> + desc->req.data_ptrs[0].dma_ext = 0;
> + for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
> + b_idx++) {
> + desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
> + desc->req.data_ptrs[b_idx].last = 1;
> + desc->req.data_ptrs[b_idx].dma_ext = 0;
> + b_idx++;
> + desc->req.data_ptrs[b_idx].blkid =
> + ACC100_DMA_BLKID_OUT_ENC;
> + desc->req.data_ptrs[b_idx].last = 1;
> + desc->req.data_ptrs[b_idx].dma_ext = 0;
> + }
> + /* Preset some fields of LDPC FCW */
> + desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
> + desc->req.fcw_ld.gain_i = 1;
> + desc->req.fcw_ld.gain_h = 1;
> + }
> +
> + q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
> + RTE_CACHE_LINE_SIZE,
> + RTE_CACHE_LINE_SIZE, conf->socket);
> + if (q->lb_in == NULL) {
> + rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
> + rte_free(q);
> + return -ENOMEM;
> + }
> + q->lb_in_addr_phys = rte_malloc_virt2iova(q->lb_in);
> + q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
> + RTE_CACHE_LINE_SIZE,
> + RTE_CACHE_LINE_SIZE, conf->socket);
> + if (q->lb_out == NULL) {
> + rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
> + rte_free(q->lb_in);
> + rte_free(q);
> + return -ENOMEM;
> + }
> + q->lb_out_addr_phys = rte_malloc_virt2iova(q->lb_out);
> +
> + /*
> + * Software queue ring wraps synchronously with the HW when it reaches
> + * the boundary of the maximum allocated queue size, no matter what the
> + * sw queue size is. This wrapping is guarded by setting the wrap_mask
> + * to represent the maximum queue size as allocated at the time when
> + * the device has been setup (in configure()).
> + *
> + * The queue depth is set to the queue size value (conf->queue_size).
> + * This limits the occupancy of the queue at any point of time, so that
> + * the queue does not get swamped with enqueue requests.
> + */
> + q->sw_ring_depth = conf->queue_size;
> + q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
> +
> + q->op_type = conf->op_type;
> +
> + q_idx = acc100_find_free_queue_idx(dev, conf);
> + if (q_idx == -1) {
> + rte_free(q->lb_in);
> + rte_free(q->lb_out);
> + rte_free(q);
> + return -1;
> + }
> +
> + q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
> + q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT) & 0x3F;
> + q->aq_id = q_idx & 0xF;
> + q->aq_depth = (conf->op_type == RTE_BBDEV_OP_TURBO_DEC) ?
> + (1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
> + (1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
> +
> + q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
> + queue_offset(d->pf_device,
> + q->vf_id, q->qgrp_id, q->aq_id));
> +
> + rte_bbdev_log_debug(
> + "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u,
> aq_depth=%u, mmio_reg_enqueue=%p",
> + dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
> + q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
> +
> + dev->data->queues[queue_id].queue_private = q;
> + return 0;
> +}
> +
> +/* Release ACC100 queue */
> +static int
> +acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
> +{
> + struct acc100_device *d = dev->data->dev_private;
> + struct acc100_queue *q = dev->data->queues[q_id].queue_private;
> +
> + if (q != NULL) {
> + /* Mark the Queue as un-assigned */
> + d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
> + (1 << q->aq_id));
> + rte_free(q->lb_in);
> + rte_free(q->lb_out);
> + rte_free(q);
> + dev->data->queues[q_id].queue_private = NULL;
> + }
> +
> return 0;
> }
>
> @@ -262,8 +695,11 @@
> }
>
> static const struct rte_bbdev_ops acc100_bbdev_ops = {
> + .setup_queues = acc100_setup_queues,
> .close = acc100_dev_close,
> .info_get = acc100_dev_info_get,
> + .queue_setup = acc100_queue_setup,
> + .queue_release = acc100_queue_release,
> };
>
> /* ACC100 PCI PF address map */
> diff --git a/drivers/baseband/acc100/rte_acc100_pmd.h
> b/drivers/baseband/acc100/rte_acc100_pmd.h
> index de015ca..2508385 100644
> --- a/drivers/baseband/acc100/rte_acc100_pmd.h
> +++ b/drivers/baseband/acc100/rte_acc100_pmd.h
> @@ -522,11 +522,56 @@ struct acc100_registry_addr {
> .ddr_range = HWVfDmaDdrBaseRangeRoVf,
> };
>
> +/* Structure associated with each queue. */
> +struct __rte_cache_aligned acc100_queue {
> + union acc100_dma_desc *ring_addr; /* Virtual address of sw ring */
> + rte_iova_t ring_addr_phys; /* Physical address of software ring */
> + uint32_t sw_ring_head; /* software ring head */
> + uint32_t sw_ring_tail; /* software ring tail */
> + /* software ring size (descriptors, not bytes) */
> + uint32_t sw_ring_depth;
> + /* mask used to wrap enqueued descriptors on the sw ring */
> + uint32_t sw_ring_wrap_mask;
> + /* MMIO register used to enqueue descriptors */
> + void *mmio_reg_enqueue;
> + uint8_t vf_id; /* VF ID (max = 63) */
> + uint8_t qgrp_id; /* Queue Group ID */
> + uint16_t aq_id; /* Atomic Queue ID */
> + uint16_t aq_depth; /* Depth of atomic queue */
> + uint32_t aq_enqueued; /* Count how many "batches" have been enqueued */
> + uint32_t aq_dequeued; /* Count how many "batches" have been dequeued */
> + uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */
> + struct rte_mempool *fcw_mempool; /* FCW mempool */
> + enum rte_bbdev_op_type op_type; /* Type of this Queue: TE or TD */
> + /* Internal Buffers for loopback input */
> + uint8_t *lb_in;
> + uint8_t *lb_out;
> + rte_iova_t lb_in_addr_phys;
> + rte_iova_t lb_out_addr_phys;
> + struct acc100_device *d;
> +};
> +
> /* Private data structure for each ACC100 device */
> struct acc100_device {
> void *mmio_base; /**< Base address of MMIO registers (BAR0) */
> + void *sw_rings_base; /* Base addr of un-aligned memory for sw rings */
> + void *sw_rings; /* 64MBs of 64MB aligned memory for sw rings */
> + rte_iova_t sw_rings_phys; /* Physical address of sw_rings */
> + /* Virtual address of the info memory routed to the this function under
> + * operation, whether it is PF or VF.
> + */
> + union acc100_harq_layout_data *harq_layout;
> + uint32_t sw_ring_size;
> uint32_t ddr_size; /* Size in kB */
> + uint32_t *tail_ptrs; /* Base address of response tail pointer buffer */
> + rte_iova_t tail_ptr_phys; /* Physical address of tail pointers */
> + /* Max number of entries available for each queue in device, depending
> + * on how many queues are enabled with configure()
> + */
> + uint32_t sw_ring_max_depth;
> struct acc100_conf acc100_conf; /* ACC100 Initial configuration */
> + /* Bitmap capturing which Queues have already been assigned */
> + uint16_t q_assigned_bit_map[ACC100_NUM_QGRPS];
> bool pf_device; /**< True if this is a PF ACC100 device */
> bool configured; /**< True if this ACC100 device is configured */
> };
>