Hi, > From: Xu, Rosen <rosen...@intel.com> > > Hi, > > > -----Original Message----- > > From: dev <dev-boun...@dpdk.org> On Behalf Of Nicolas Chautru > > Sent: Wednesday, August 19, 2020 8:25 > > To: dev@dpdk.org; akhil.go...@nxp.com > > Cc: Richardson, Bruce <bruce.richard...@intel.com>; Chautru, Nicolas > > <nicolas.chau...@intel.com> > > Subject: [dpdk-dev] [PATCH v3 04/11] baseband/acc100: add queue > > configuration > > > > Adding function to create and configure queues for the device. Still > > no capability. > > > > Signed-off-by: Nicolas Chautru <nicolas.chau...@intel.com> > > --- > > drivers/baseband/acc100/rte_acc100_pmd.c | 420 > > ++++++++++++++++++++++++++++++- > > drivers/baseband/acc100/rte_acc100_pmd.h | 45 ++++ > > 2 files changed, 464 insertions(+), 1 deletion(-) > > > > diff --git a/drivers/baseband/acc100/rte_acc100_pmd.c > > b/drivers/baseband/acc100/rte_acc100_pmd.c > > index 7807a30..7a21c57 100644 > > --- a/drivers/baseband/acc100/rte_acc100_pmd.c > > +++ b/drivers/baseband/acc100/rte_acc100_pmd.c > > @@ -26,6 +26,22 @@ > > RTE_LOG_REGISTER(acc100_logtype, pmd.bb.acc100, NOTICE); #endif > > > > +/* Write to MMIO register address */ > > +static inline void > > +mmio_write(void *addr, uint32_t value) { > > + *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value); } > > + > > +/* Write a register of a ACC100 device */ static inline void > > +acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t > > +payload) { > > + void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset); > > + mmio_write(reg_addr, payload); > > + usleep(1000); > > +} > > + > > /* Read a register of a ACC100 device */ static inline uint32_t > > acc100_reg_read(struct acc100_device *d, uint32_t offset) @@ -36,6 > > +52,22 @@ > > return rte_le_to_cpu_32(ret); > > } > > > > +/* Basic Implementation of Log2 for exact 2^N */ static inline > > +uint32_t log2_basic(uint32_t value) { > > + return (value == 0) ? 0 : __builtin_ctz(value); } > > + > > +/* Calculate memory alignment offset assuming alignment is 2^N */ > > +static inline uint32_t calc_mem_alignment_offset(void > > +*unaligned_virt_mem, uint32_t alignment) { > > + rte_iova_t unaligned_phy_mem = > > rte_malloc_virt2iova(unaligned_virt_mem); > > + return (uint32_t)(alignment - > > + (unaligned_phy_mem & (alignment-1))); } > > + > > /* Calculate the offset of the enqueue register */ static inline > > uint32_t queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, > > uint16_t aq_id) @@ -204,10 +236,393 @@ > > acc100_conf->q_dl_5g.aq_depth_log2); > > } > > > > +static void > > +free_base_addresses(void **base_addrs, int size) { > > + int i; > > + for (i = 0; i < size; i++) > > + rte_free(base_addrs[i]); > > +} > > + > > +static inline uint32_t > > +get_desc_len(void) > > +{ > > + return sizeof(union acc100_dma_desc); } > > + > > +/* Allocate the 2 * 64MB block for the sw rings */ static int > > +alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device > > *d, > > + int socket) > > +{ > > + uint32_t sw_ring_size = ACC100_SIZE_64MBYTE; > > + d->sw_rings_base = rte_zmalloc_socket(dev->device->driver- > > >name, > > + 2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket); > > + if (d->sw_rings_base == NULL) { > > + rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u", > > + dev->device->driver->name, > > + dev->data->dev_id); > > + return -ENOMEM; > > + } > > + memset(d->sw_rings_base, 0, ACC100_SIZE_64MBYTE); > > + uint32_t next_64mb_align_offset = calc_mem_alignment_offset( > > + d->sw_rings_base, ACC100_SIZE_64MBYTE); > > + d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, > > next_64mb_align_offset); > > + d->sw_rings_phys = rte_malloc_virt2iova(d->sw_rings_base) + > > + next_64mb_align_offset; > > + d->sw_ring_size = MAX_QUEUE_DEPTH * get_desc_len(); > > + d->sw_ring_max_depth = d->sw_ring_size / get_desc_len(); > > + > > + return 0; > > +} > > Why not a common alloc memory function but special function for different > memory size?
This is a bit convoluted but due to the fact the first attempt method which is optimal (minimum) may not always find aligned memory. > > > +/* Attempt to allocate minimised memory space for sw rings */ static > > +void alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct > > acc100_device > > +*d, > > + uint16_t num_queues, int socket) > > +{ > > + rte_iova_t sw_rings_base_phy, next_64mb_align_addr_phy; > > + uint32_t next_64mb_align_offset; > > + rte_iova_t sw_ring_phys_end_addr; > > + void *base_addrs[SW_RING_MEM_ALLOC_ATTEMPTS]; > > + void *sw_rings_base; > > + int i = 0; > > + uint32_t q_sw_ring_size = MAX_QUEUE_DEPTH * get_desc_len(); > > + uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues; > > + > > + /* Find an aligned block of memory to store sw rings */ > > + while (i < SW_RING_MEM_ALLOC_ATTEMPTS) { > > + /* > > + * sw_ring allocated memory is guaranteed to be aligned to > > + * q_sw_ring_size at the condition that the requested size is > > + * less than the page size > > + */ > > + sw_rings_base = rte_zmalloc_socket( > > + dev->device->driver->name, > > + dev_sw_ring_size, q_sw_ring_size, socket); > > + > > + if (sw_rings_base == NULL) { > > + rte_bbdev_log(ERR, > > + "Failed to allocate memory > > for %s:%u", > > + dev->device->driver->name, > > + dev->data->dev_id); > > + break; > > + } > > + > > + sw_rings_base_phy = rte_malloc_virt2iova(sw_rings_base); > > + next_64mb_align_offset = calc_mem_alignment_offset( > > + sw_rings_base, ACC100_SIZE_64MBYTE); > > + next_64mb_align_addr_phy = sw_rings_base_phy + > > + next_64mb_align_offset; > > + sw_ring_phys_end_addr = sw_rings_base_phy + > > dev_sw_ring_size; > > + > > + /* Check if the end of the sw ring memory block is before the > > + * start of next 64MB aligned mem address > > + */ > > + if (sw_ring_phys_end_addr < next_64mb_align_addr_phy) { > > + d->sw_rings_phys = sw_rings_base_phy; > > + d->sw_rings = sw_rings_base; > > + d->sw_rings_base = sw_rings_base; > > + d->sw_ring_size = q_sw_ring_size; > > + d->sw_ring_max_depth = MAX_QUEUE_DEPTH; > > + break; > > + } > > + /* Store the address of the unaligned mem block */ > > + base_addrs[i] = sw_rings_base; > > + i++; > > + } > > + > > + /* Free all unaligned blocks of mem allocated in the loop */ > > + free_base_addresses(base_addrs, i); > > +} > > It's strange to firstly alloc memory and then free memory but on operations on > this memory. I may miss your point. We are freeing the exact same mem we did get from rte_zmalloc. Not that the base_addrs array refers to multiple attempts of mallocs, not multiple operations in a ring. > > > + > > +/* Allocate 64MB memory used for all software rings */ static int > > +acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int > > +socket_id) { > > + uint32_t phys_low, phys_high, payload; > > + struct acc100_device *d = dev->data->dev_private; > > + const struct acc100_registry_addr *reg_addr; > > + > > + if (d->pf_device && !d->acc100_conf.pf_mode_en) { > > + rte_bbdev_log(NOTICE, > > + "%s has PF mode disabled. This PF can't be > > used.", > > + dev->data->name); > > + return -ENODEV; > > + } > > + > > + alloc_sw_rings_min_mem(dev, d, num_queues, socket_id); > > + > > + /* If minimal memory space approach failed, then allocate > > + * the 2 * 64MB block for the sw rings > > + */ > > + if (d->sw_rings == NULL) > > + alloc_2x64mb_sw_rings_mem(dev, d, socket_id); > > + > > + /* Configure ACC100 with the base address for DMA descriptor rings > > + * Same descriptor rings used for UL and DL DMA Engines > > + * Note : Assuming only VF0 bundle is used for PF mode > > + */ > > + phys_high = (uint32_t)(d->sw_rings_phys >> 32); > > + phys_low = (uint32_t)(d->sw_rings_phys & > > ~(ACC100_SIZE_64MBYTE-1)); > > + > > + /* Choose correct registry addresses for the device type */ > > + if (d->pf_device) > > + reg_addr = &pf_reg_addr; > > + else > > + reg_addr = &vf_reg_addr; > > + > > + /* Read the populated cfg from ACC100 registers */ > > + fetch_acc100_config(dev); > > + > > + /* Mark as configured properly */ > > + d->configured = true; > > + > > + /* Release AXI from PF */ > > + if (d->pf_device) > > + acc100_reg_write(d, HWPfDmaAxiControl, 1); > > + > > + acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low); > > + acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low); > > + acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low); > > + acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low); > > + > > + /* > > + * Configure Ring Size to the max queue ring size > > + * (used for wrapping purpose) > > + */ > > + payload = log2_basic(d->sw_ring_size / 64); > > + acc100_reg_write(d, reg_addr->ring_size, payload); > > + > > + /* Configure tail pointer for use when SDONE enabled */ > > + d->tail_ptrs = rte_zmalloc_socket( > > + dev->device->driver->name, > > + ACC100_NUM_QGRPS * ACC100_NUM_AQS * > > sizeof(uint32_t), > > + RTE_CACHE_LINE_SIZE, socket_id); > > + if (d->tail_ptrs == NULL) { > > + rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u", > > + dev->device->driver->name, > > + dev->data->dev_id); > > + rte_free(d->sw_rings); > > + return -ENOMEM; > > + } > > + d->tail_ptr_phys = rte_malloc_virt2iova(d->tail_ptrs); > > + > > + phys_high = (uint32_t)(d->tail_ptr_phys >> 32); > > + phys_low = (uint32_t)(d->tail_ptr_phys); > > + acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low); > > + acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low); > > + acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low); > > + acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high); > > + acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low); > > + > > + d->harq_layout = rte_zmalloc_socket("HARQ Layout", > > + ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout), > > + RTE_CACHE_LINE_SIZE, dev->data->socket_id); > > + > > + rte_bbdev_log_debug( > > + "ACC100 (%s) configured sw_rings = %p, > > sw_rings_phys = %#" > > + PRIx64, dev->data->name, d->sw_rings, d- > > >sw_rings_phys); > > + > > + return 0; > > +} > > + > > /* Free 64MB memory used for software rings */ static int - > > acc100_dev_close(struct rte_bbdev *dev __rte_unused) > > +acc100_dev_close(struct rte_bbdev *dev) > > { > > + struct acc100_device *d = dev->data->dev_private; > > + if (d->sw_rings_base != NULL) { > > + rte_free(d->tail_ptrs); > > + rte_free(d->sw_rings_base); > > + d->sw_rings_base = NULL; > > + } > > + usleep(1000); > > + return 0; > > +} > > + > > + > > +/** > > + * Report a ACC100 queue index which is free > > + * Return 0 to 16k for a valid queue_idx or -1 when no queue is > > +available > > + * Note : Only supporting VF0 Bundle for PF mode */ static int > > +acc100_find_free_queue_idx(struct rte_bbdev *dev, > > + const struct rte_bbdev_queue_conf *conf) { > > + struct acc100_device *d = dev->data->dev_private; > > + int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G}; > > + int acc = op_2_acc[conf->op_type]; > > + struct rte_q_topology_t *qtop = NULL; > > + qtopFromAcc(&qtop, acc, &(d->acc100_conf)); > > + if (qtop == NULL) > > + return -1; > > + /* Identify matching QGroup Index which are sorted in priority order > > */ > > + uint16_t group_idx = qtop->first_qgroup_index; > > + group_idx += conf->priority; > > + if (group_idx >= ACC100_NUM_QGRPS || > > + conf->priority >= qtop->num_qgroups) { > > + rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u", > > + dev->data->name, conf->priority); > > + return -1; > > + } > > + /* Find a free AQ_idx */ > > + uint16_t aq_idx; > > + for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) { > > + if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) > > == 0) { > > + /* Mark the Queue as assigned */ > > + d->q_assigned_bit_map[group_idx] |= (1 << aq_idx); > > + /* Report the AQ Index */ > > + return (group_idx << GRP_ID_SHIFT) + aq_idx; > > + } > > + } > > + rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u", > > + dev->data->name, conf->priority); > > + return -1; > > +} > > + > > +/* Setup ACC100 queue */ > > +static int > > +acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id, > > + const struct rte_bbdev_queue_conf *conf) { > > + struct acc100_device *d = dev->data->dev_private; > > + struct acc100_queue *q; > > + int16_t q_idx; > > + > > + /* Allocate the queue data structure. */ > > + q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q), > > + RTE_CACHE_LINE_SIZE, conf->socket); > > + if (q == NULL) { > > + rte_bbdev_log(ERR, "Failed to allocate queue memory"); > > + return -ENOMEM; > > + } > > + > > + q->d = d; > > + q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * > > queue_id)); > > + q->ring_addr_phys = d->sw_rings_phys + (d->sw_ring_size * > > queue_id); > > + > > + /* Prepare the Ring with default descriptor format */ > > + union acc100_dma_desc *desc = NULL; > > + unsigned int desc_idx, b_idx; > > + int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ? > > + ACC100_FCW_LE_BLEN : (conf->op_type == > > RTE_BBDEV_OP_TURBO_DEC ? > > + ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN)); > > + > > + for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) { > > + desc = q->ring_addr + desc_idx; > > + desc->req.word0 = ACC100_DMA_DESC_TYPE; > > + desc->req.word1 = 0; /**< Timestamp */ > > + desc->req.word2 = 0; > > + desc->req.word3 = 0; > > + uint64_t fcw_offset = (desc_idx << 8) + > > ACC100_DESC_FCW_OFFSET; > > + desc->req.data_ptrs[0].address = q->ring_addr_phys + > > fcw_offset; > > + desc->req.data_ptrs[0].blen = fcw_len; > > + desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW; > > + desc->req.data_ptrs[0].last = 0; > > + desc->req.data_ptrs[0].dma_ext = 0; > > + for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS > > - 1; > > + b_idx++) { > > + desc->req.data_ptrs[b_idx].blkid = > > ACC100_DMA_BLKID_IN; > > + desc->req.data_ptrs[b_idx].last = 1; > > + desc->req.data_ptrs[b_idx].dma_ext = 0; > > + b_idx++; > > + desc->req.data_ptrs[b_idx].blkid = > > + ACC100_DMA_BLKID_OUT_ENC; > > + desc->req.data_ptrs[b_idx].last = 1; > > + desc->req.data_ptrs[b_idx].dma_ext = 0; > > + } > > + /* Preset some fields of LDPC FCW */ > > + desc->req.fcw_ld.FCWversion = ACC100_FCW_VER; > > + desc->req.fcw_ld.gain_i = 1; > > + desc->req.fcw_ld.gain_h = 1; > > + } > > + > > + q->lb_in = rte_zmalloc_socket(dev->device->driver->name, > > + RTE_CACHE_LINE_SIZE, > > + RTE_CACHE_LINE_SIZE, conf->socket); > > + if (q->lb_in == NULL) { > > + rte_bbdev_log(ERR, "Failed to allocate lb_in memory"); > > + return -ENOMEM; > > + } > > + q->lb_in_addr_phys = rte_malloc_virt2iova(q->lb_in); > > + q->lb_out = rte_zmalloc_socket(dev->device->driver->name, > > + RTE_CACHE_LINE_SIZE, > > + RTE_CACHE_LINE_SIZE, conf->socket); > > + if (q->lb_out == NULL) { > > + rte_bbdev_log(ERR, "Failed to allocate lb_out memory"); > > + return -ENOMEM; > > + } > > + q->lb_out_addr_phys = rte_malloc_virt2iova(q->lb_out); > > + > > + /* > > + * Software queue ring wraps synchronously with the HW when it > > reaches > > + * the boundary of the maximum allocated queue size, no matter > > what the > > + * sw queue size is. This wrapping is guarded by setting the > > wrap_mask > > + * to represent the maximum queue size as allocated at the time > > when > > + * the device has been setup (in configure()). > > + * > > + * The queue depth is set to the queue size value (conf- > > >queue_size). > > + * This limits the occupancy of the queue at any point of time, so that > > + * the queue does not get swamped with enqueue requests. > > + */ > > + q->sw_ring_depth = conf->queue_size; > > + q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1; > > + > > + q->op_type = conf->op_type; > > + > > + q_idx = acc100_find_free_queue_idx(dev, conf); > > + if (q_idx == -1) { > > + rte_free(q); > > + return -1; > > + } > > + > > + q->qgrp_id = (q_idx >> GRP_ID_SHIFT) & 0xF; > > + q->vf_id = (q_idx >> VF_ID_SHIFT) & 0x3F; > > + q->aq_id = q_idx & 0xF; > > + q->aq_depth = (conf->op_type == RTE_BBDEV_OP_TURBO_DEC) ? > > + (1 << d->acc100_conf.q_ul_4g.aq_depth_log2) : > > + (1 << d->acc100_conf.q_dl_4g.aq_depth_log2); > > + > > + q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base, > > + queue_offset(d->pf_device, > > + q->vf_id, q->qgrp_id, q->aq_id)); > > + > > + rte_bbdev_log_debug( > > + "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, > > aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p", > > + dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id, > > + q->aq_id, q->aq_depth, q->mmio_reg_enqueue); > > + > > + dev->data->queues[queue_id].queue_private = q; > > + return 0; > > +} > > + > > +/* Release ACC100 queue */ > > +static int > > +acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id) { > > + struct acc100_device *d = dev->data->dev_private; > > + struct acc100_queue *q = dev->data->queues[q_id].queue_private; > > + > > + if (q != NULL) { > > + /* Mark the Queue as un-assigned */ > > + d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF - > > + (1 << q->aq_id)); > > + rte_free(q->lb_in); > > + rte_free(q->lb_out); > > + rte_free(q); > > + dev->data->queues[q_id].queue_private = NULL; > > + } > > + > > return 0; > > } > > > > @@ -258,8 +673,11 @@ > > } > > > > static const struct rte_bbdev_ops acc100_bbdev_ops = { > > + .setup_queues = acc100_setup_queues, > > .close = acc100_dev_close, > > .info_get = acc100_dev_info_get, > > + .queue_setup = acc100_queue_setup, > > + .queue_release = acc100_queue_release, > > }; > > > > /* ACC100 PCI PF address map */ > > diff --git a/drivers/baseband/acc100/rte_acc100_pmd.h > > b/drivers/baseband/acc100/rte_acc100_pmd.h > > index 662e2c8..0e2b79c 100644 > > --- a/drivers/baseband/acc100/rte_acc100_pmd.h > > +++ b/drivers/baseband/acc100/rte_acc100_pmd.h > > @@ -518,11 +518,56 @@ struct acc100_registry_addr { > > .ddr_range = HWVfDmaDdrBaseRangeRoVf, }; > > > > +/* Structure associated with each queue. */ struct > > +__rte_cache_aligned acc100_queue { > > + union acc100_dma_desc *ring_addr; /* Virtual address of sw ring */ > > + rte_iova_t ring_addr_phys; /* Physical address of software ring */ > > + uint32_t sw_ring_head; /* software ring head */ > > + uint32_t sw_ring_tail; /* software ring tail */ > > + /* software ring size (descriptors, not bytes) */ > > + uint32_t sw_ring_depth; > > + /* mask used to wrap enqueued descriptors on the sw ring */ > > + uint32_t sw_ring_wrap_mask; > > + /* MMIO register used to enqueue descriptors */ > > + void *mmio_reg_enqueue; > > + uint8_t vf_id; /* VF ID (max = 63) */ > > + uint8_t qgrp_id; /* Queue Group ID */ > > + uint16_t aq_id; /* Atomic Queue ID */ > > + uint16_t aq_depth; /* Depth of atomic queue */ > > + uint32_t aq_enqueued; /* Count how many "batches" have been > > enqueued */ > > + uint32_t aq_dequeued; /* Count how many "batches" have been > > dequeued */ > > + uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */ > > + struct rte_mempool *fcw_mempool; /* FCW mempool */ > > + enum rte_bbdev_op_type op_type; /* Type of this Queue: TE or TD > > */ > > + /* Internal Buffers for loopback input */ > > + uint8_t *lb_in; > > + uint8_t *lb_out; > > + rte_iova_t lb_in_addr_phys; > > + rte_iova_t lb_out_addr_phys; > > + struct acc100_device *d; > > +}; > > + > > /* Private data structure for each ACC100 device */ struct acc100_device { > > void *mmio_base; /**< Base address of MMIO registers (BAR0) */ > > + void *sw_rings_base; /* Base addr of un-aligned memory for sw > > rings */ > > + void *sw_rings; /* 64MBs of 64MB aligned memory for sw rings */ > > + rte_iova_t sw_rings_phys; /* Physical address of sw_rings */ > > + /* Virtual address of the info memory routed to the this function > > under > > + * operation, whether it is PF or VF. > > + */ > > + union acc100_harq_layout_data *harq_layout; > > + uint32_t sw_ring_size; > > uint32_t ddr_size; /* Size in kB */ > > + uint32_t *tail_ptrs; /* Base address of response tail pointer buffer */ > > + rte_iova_t tail_ptr_phys; /* Physical address of tail pointers */ > > + /* Max number of entries available for each queue in device, > > depending > > + * on how many queues are enabled with configure() > > + */ > > + uint32_t sw_ring_max_depth; > > struct acc100_conf acc100_conf; /* ACC100 Initial configuration */ > > + /* Bitmap capturing which Queues have already been assigned */ > > + uint16_t q_assigned_bit_map[ACC100_NUM_QGRPS]; > > bool pf_device; /**< True if this is a PF ACC100 device */ > > bool configured; /**< True if this ACC100 device is configured */ > > }; > > -- > > 1.8.3.1