Leyi Rong <leyi.r...@intel.com> writes:

> This patch enables AVX data path for iavf PMD.
>
> Signed-off-by: Leyi Rong <leyi.r...@intel.com>
> ---
>  drivers/net/iavf/Makefile               |  21 +
>  drivers/net/iavf/iavf_rxtx.c            |  62 +-
>  drivers/net/iavf/iavf_rxtx.h            |  10 +
>  drivers/net/iavf/iavf_rxtx_vec_avx2.c   | 867 ++++++++++++++++++++++++
>  drivers/net/iavf/iavf_rxtx_vec_common.h |  72 ++
>  drivers/net/iavf/iavf_rxtx_vec_sse.c    |  12 +
>  drivers/net/iavf/meson.build            |  17 +
>  7 files changed, 1041 insertions(+), 20 deletions(-)
>  create mode 100644 drivers/net/iavf/iavf_rxtx_vec_avx2.c
>
> diff --git a/drivers/net/iavf/Makefile b/drivers/net/iavf/Makefile
> index cd74e14ab..cf0ed99f0 100644
> --- a/drivers/net/iavf/Makefile
> +++ b/drivers/net/iavf/Makefile
> @@ -48,4 +48,25 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y)
>  SRCS-$(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR) += iavf_rxtx_vec_sse.c
>  endif
>  
> +ifeq ($(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR), y)
> +     ifeq ($(findstring 
> RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2)
> +             CC_AVX2_SUPPORT=1
> +     else
> +             CC_AVX2_SUPPORT=\
> +             $(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
> +             grep -q AVX2 && echo 1)
> +             ifeq ($(CC_AVX2_SUPPORT), 1)
> +                     ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
> +                             CFLAGS_iavf_rxtx_vec_avx2.o += -march=core-avx2
> +                     else
> +                             CFLAGS_iavf_rxtx_vec_avx2.o += -mavx2
> +                     endif
> +             endif
> +     endif
> +endif
> +
> +ifeq ($(CC_AVX2_SUPPORT), 1)
> +     SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_avx2.c
> +endif
> +
>  include $(RTE_SDK)/mk/rte.lib.mk
> diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c
> index 22d7bb612..2eb496d5f 100644
> --- a/drivers/net/iavf/iavf_rxtx.c
> +++ b/drivers/net/iavf/iavf_rxtx.c
> @@ -1743,23 +1743,36 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
>               IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
>       struct iavf_rx_queue *rxq;
>       int i;
> +     bool use_avx2 = false;
>  
> -     if (adapter->rx_vec_allowed) {
> -             if (dev->data->scattered_rx) {
> -                     PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
> -                                 " (port=%d).", dev->data->port_id);
> -                     dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
> -             } else {
> -                     PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
> -                                 " (port=%d).", dev->data->port_id);
> -                     dev->rx_pkt_burst = iavf_recv_pkts_vec;
> -             }
> +     if (!iavf_rx_vec_dev_check(dev)) {
>               for (i = 0; i < dev->data->nb_rx_queues; i++) {
>                       rxq = dev->data->rx_queues[i];
> -                     if (!rxq)
> -                             continue;
> -                     iavf_rxq_vec_setup(rxq);
> +                     (void)iavf_rxq_vec_setup(rxq);
>               }
> +
> +             if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
> +                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
> +                     use_avx2 = true;

This will cause a build failure on aarch64 systems.

ex:

../drivers/net/iavf/iavf_rxtx.c:1754:7: error: implicit declaration of function 
‘rte_cpu_get_flag_enabled’ [-Werror=implicit-function-declaration]

   if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
       ^

../drivers/net/iavf/iavf_rxtx.c:1754:32: error: ‘RTE_CPUFLAG_AVX2’ undeclared 
(first use in this function)

   if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
                                ^

../drivers/net/iavf/iavf_rxtx.c:1754:32: note: each undeclared identifier is 
reported only once for each function it appears in

../drivers/net/iavf/iavf_rxtx.c:1755:32: error: ‘RTE_CPUFLAG_AVX512F’ 
undeclared (first use in this function)

       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
                                ^

../drivers/net/iavf/iavf_rxtx.c: In function ‘iavf_set_tx_function’:

../drivers/net/iavf/iavf_rxtx.c:1807:32: error: ‘RTE_CPUFLAG_AVX2’ undeclared 
(first use in this function)

   if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
                                ^

../drivers/net/iavf/iavf_rxtx.c:1808:32: error: ‘RTE_CPUFLAG_AVX512F’ 
undeclared (first use in this function)

       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
                                ^

> +             if (dev->data->scattered_rx) {
> +                     PMD_DRV_LOG(DEBUG,
> +                                 "Using %sVector Scattered Rx (port %d).",
> +                                 use_avx2 ? "avx2 " : "",
> +                                 dev->data->port_id);
> +                     dev->rx_pkt_burst = use_avx2 ?
> +                                         iavf_recv_scattered_pkts_vec_avx2 :
> +                                         iavf_recv_scattered_pkts_vec;
> +             } else {
> +                     PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
> +                                 use_avx2 ? "avx2 " : "",
> +                                 dev->data->port_id);
> +                     dev->rx_pkt_burst = use_avx2 ?
> +                                         iavf_recv_pkts_vec_avx2 :
> +                                         iavf_recv_pkts_vec;
> +             }
> +
> +             return;
>       } else if (dev->data->scattered_rx) {
>               PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
>                           dev->data->port_id);
> @@ -1779,22 +1792,31 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
>  void
>  iavf_set_tx_function(struct rte_eth_dev *dev)
>  {
> -     struct iavf_adapter *adapter =
> -             IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
>       struct iavf_tx_queue *txq;
>       int i;
> +     bool use_avx2 = false;
>  
> -     if (adapter->tx_vec_allowed) {
> -             PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
> -                         dev->data->port_id);
> -             dev->tx_pkt_burst = iavf_xmit_pkts_vec;
> -             dev->tx_pkt_prepare = NULL;
> +     if (!iavf_tx_vec_dev_check(dev)) {
>               for (i = 0; i < dev->data->nb_tx_queues; i++) {
>                       txq = dev->data->tx_queues[i];
>                       if (!txq)
>                               continue;
>                       iavf_txq_vec_setup(txq);
>               }
> +
> +             if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
> +                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
> +                     use_avx2 = true;
> +
> +             PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
> +                         use_avx2 ? "avx2 " : "",
> +                         dev->data->port_id);
> +             dev->tx_pkt_burst = use_avx2 ?
> +                                 iavf_xmit_pkts_vec_avx2 :
> +                                 iavf_xmit_pkts_vec;
> +             dev->tx_pkt_prepare = NULL;
> +
> +             return;
>       } else {
>               PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
>                           dev->data->port_id);
> diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h
> index c86720bda..7dde392bf 100644
> --- a/drivers/net/iavf/iavf_rxtx.h
> +++ b/drivers/net/iavf/iavf_rxtx.h
> @@ -19,6 +19,7 @@
>  /* used for Vector PMD */
>  #define IAVF_VPMD_RX_MAX_BURST    32
>  #define IAVF_VPMD_TX_MAX_BURST    32
> +#define IAVF_RXQ_REARM_THRESH     32
>  #define IAVF_VPMD_DESCS_PER_LOOP  4
>  #define IAVF_VPMD_TX_MAX_FREE_BUF 64
>  
> @@ -200,6 +201,15 @@ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue,
>                                    uint16_t nb_pkts);
>  uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
>                                 uint16_t nb_pkts);
> +uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> +                              uint16_t nb_pkts);
> +uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue,
> +                                        struct rte_mbuf **rx_pkts,
> +                                        uint16_t nb_pkts);
> +uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
> +                              uint16_t nb_pkts);
> +int iavf_rx_vec_dev_check(struct rte_eth_dev *dev);
> +int iavf_tx_vec_dev_check(struct rte_eth_dev *dev);
>  int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq);
>  int iavf_txq_vec_setup(struct iavf_tx_queue *txq);
>  
> diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c 
> b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
> new file mode 100644
> index 000000000..f0c00be56
> --- /dev/null
> +++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
> @@ -0,0 +1,867 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2019 Intel Corporation
> + */
> +
> +#include "base/iavf_prototype.h"
> +#include "iavf_rxtx_vec_common.h"
> +
> +#include <x86intrin.h>
> +
> +#ifndef __INTEL_COMPILER
> +#pragma GCC diagnostic ignored "-Wcast-qual"
> +#endif
> +
> +static inline void
> +iavf_rxq_rearm(struct iavf_rx_queue *rxq)
> +{
> +     int i;
> +     uint16_t rx_id;
> +     volatile union iavf_rx_desc *rxdp;
> +     struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
> +
> +     rxdp = rxq->rx_ring + rxq->rxrearm_start;
> +
> +     /* Pull 'n' more MBUFs into the software ring */
> +     if (rte_mempool_get_bulk(rxq->mp,
> +                              (void *)rxp,
> +                              IAVF_RXQ_REARM_THRESH) < 0) {
> +             if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
> +                 rxq->nb_rx_desc) {
> +                     __m128i dma_addr0;
> +
> +                     dma_addr0 = _mm_setzero_si128();
> +                     for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
> +                             rxp[i] = &rxq->fake_mbuf;
> +                             _mm_store_si128((__m128i *)&rxdp[i].read,
> +                                             dma_addr0);
> +                     }
> +             }
> +             rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
> +                     IAVF_RXQ_REARM_THRESH;
> +             return;
> +     }
> +
> +#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
> +     struct rte_mbuf *mb0, *mb1;
> +     __m128i dma_addr0, dma_addr1;
> +     __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
> +                     RTE_PKTMBUF_HEADROOM);
> +     /* Initialize the mbufs in vector, process 2 mbufs in one loop */
> +     for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
> +             __m128i vaddr0, vaddr1;
> +
> +             mb0 = rxp[0];
> +             mb1 = rxp[1];
> +
> +             /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
> +             RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
> +                             offsetof(struct rte_mbuf, buf_addr) + 8);
> +             vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
> +             vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
> +
> +             /* convert pa to dma_addr hdr/data */
> +             dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
> +             dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
> +
> +             /* add headroom to pa values */
> +             dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
> +             dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
> +
> +             /* flush desc with pa dma_addr */
> +             _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
> +             _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
> +     }
> +#else
> +     struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
> +     __m256i dma_addr0_1, dma_addr2_3;
> +     __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
> +     /* Initialize the mbufs in vector, process 4 mbufs in one loop */
> +     for (i = 0; i < IAVF_RXQ_REARM_THRESH;
> +                     i += 4, rxp += 4, rxdp += 4) {
> +             __m128i vaddr0, vaddr1, vaddr2, vaddr3;
> +             __m256i vaddr0_1, vaddr2_3;
> +
> +             mb0 = rxp[0];
> +             mb1 = rxp[1];
> +             mb2 = rxp[2];
> +             mb3 = rxp[3];
> +
> +             /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
> +             RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
> +                             offsetof(struct rte_mbuf, buf_addr) + 8);
> +             vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
> +             vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
> +             vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
> +             vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
> +
> +             /**
> +              * merge 0 & 1, by casting 0 to 256-bit and inserting 1
> +              * into the high lanes. Similarly for 2 & 3
> +              */
> +             vaddr0_1 =
> +                     _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
> +                                             vaddr1, 1);
> +             vaddr2_3 =
> +                     _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
> +                                             vaddr3, 1);
> +
> +             /* convert pa to dma_addr hdr/data */
> +             dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
> +             dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
> +
> +             /* add headroom to pa values */
> +             dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
> +             dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
> +
> +             /* flush desc with pa dma_addr */
> +             _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
> +             _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
> +     }
> +
> +#endif
> +
> +     rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
> +     if (rxq->rxrearm_start >= rxq->nb_rx_desc)
> +             rxq->rxrearm_start = 0;
> +
> +     rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
> +
> +     rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
> +                          (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
> +
> +     /* Update the tail pointer on the NIC */
> +     IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
> +}
> +
> +#define PKTLEN_SHIFT     10
> +
> +static inline uint16_t
> +_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
> +                          struct rte_mbuf **rx_pkts,
> +                          uint16_t nb_pkts, uint8_t *split_packet)
> +{
> +#define IAVF_DESCS_PER_LOOP_AVX 8
> +
> +     /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
> +     static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
> +             /* [0] reserved */
> +             [1] = RTE_PTYPE_L2_ETHER,
> +             /* [2] - [21] reserved */
> +             [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> +                     RTE_PTYPE_L4_FRAG,
> +             [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> +                     RTE_PTYPE_L4_NONFRAG,
> +             [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> +                     RTE_PTYPE_L4_UDP,
> +             /* [25] reserved */
> +             [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> +                     RTE_PTYPE_L4_TCP,
> +             [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> +                     RTE_PTYPE_L4_SCTP,
> +             [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> +                     RTE_PTYPE_L4_ICMP,
> +             /* All others reserved */
> +     };
> +     const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
> +                     0, rxq->mbuf_initializer);
> +     /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
> +     struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
> +     volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
> +     const int avx_aligned = ((rxq->rx_tail & 1) == 0);
> +
> +     rte_prefetch0(rxdp);
> +
> +     /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
> +     nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
> +
> +     /* See if we need to rearm the RX queue - gives the prefetch a bit
> +      * of time to act
> +      */
> +     if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
> +             iavf_rxq_rearm(rxq);
> +
> +     /* Before we start moving massive data around, check to see if
> +      * there is actually a packet available
> +      */
> +     if (!(rxdp->wb.qword1.status_error_len &
> +                     rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
> +             return 0;
> +
> +     /* constants used in processing loop */
> +     const __m256i crc_adjust =
> +             _mm256_set_epi16
> +                     (/* first descriptor */
> +                      0, 0, 0,       /* ignore non-length fields */
> +                      -rxq->crc_len, /* sub crc on data_len */
> +                      0,             /* ignore high-16bits of pkt_len */
> +                      -rxq->crc_len, /* sub crc on pkt_len */
> +                      0, 0,          /* ignore pkt_type field */
> +                      /* second descriptor */
> +                      0, 0, 0,       /* ignore non-length fields */
> +                      -rxq->crc_len, /* sub crc on data_len */
> +                      0,             /* ignore high-16bits of pkt_len */
> +                      -rxq->crc_len, /* sub crc on pkt_len */
> +                      0, 0           /* ignore pkt_type field */
> +                     );
> +
> +     /* 8 packets DD mask, LSB in each 32-bit value */
> +     const __m256i dd_check = _mm256_set1_epi32(1);
> +
> +     /* 8 packets EOP mask, second-LSB in each 32-bit value */
> +     const __m256i eop_check = _mm256_slli_epi32(dd_check,
> +                     IAVF_RX_DESC_STATUS_EOF_SHIFT);
> +
> +     /* mask to shuffle from desc. to mbuf (2 descriptors)*/
> +     const __m256i shuf_msk =
> +             _mm256_set_epi8
> +                     (/* first descriptor */
> +                      7, 6, 5, 4,  /* octet 4~7, 32bits rss */
> +                      3, 2,        /* octet 2~3, low 16 bits vlan_macip */
> +                      15, 14,      /* octet 15~14, 16 bits data_len */
> +                      0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
> +                      15, 14,      /* octet 15~14, low 16 bits pkt_len */
> +                      0xFF, 0xFF,  /* pkt_type set as unknown */
> +                      0xFF, 0xFF,  /*pkt_type set as unknown */
> +                      /* second descriptor */
> +                      7, 6, 5, 4,  /* octet 4~7, 32bits rss */
> +                      3, 2,        /* octet 2~3, low 16 bits vlan_macip */
> +                      15, 14,      /* octet 15~14, 16 bits data_len */
> +                      0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
> +                      15, 14,      /* octet 15~14, low 16 bits pkt_len */
> +                      0xFF, 0xFF,  /* pkt_type set as unknown */
> +                      0xFF, 0xFF   /*pkt_type set as unknown */
> +                     );
> +     /**
> +      * compile-time check the above crc and shuffle layout is correct.
> +      * NOTE: the first field (lowest address) is given last in set_epi
> +      * calls above.
> +      */
> +     RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
> +                     offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
> +     RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
> +                     offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
> +     RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
> +                     offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
> +     RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
> +                     offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
> +
> +     /* Status/Error flag masks */
> +     /**
> +      * mask everything except RSS, flow director and VLAN flags
> +      * bit2 is for VLAN tag, bit11 for flow director indication
> +      * bit13:12 for RSS indication. Bits 3-5 of error
> +      * field (bits 22-24) are for IP/L4 checksum errors
> +      */
> +     const __m256i flags_mask =
> +              _mm256_set1_epi32((1 << 2) | (1 << 11) |
> +                                (3 << 12) | (7 << 22));
> +     /**
> +      * data to be shuffled by result of flag mask. If VLAN bit is set,
> +      * (bit 2), then position 4 in this array will be used in the
> +      * destination
> +      */
> +     const __m256i vlan_flags_shuf =
> +             _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
> +                              0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
> +     /**
> +      * data to be shuffled by result of flag mask, shifted down 11.
> +      * If RSS/FDIR bits are set, shuffle moves appropriate flags in
> +      * place.
> +      */
> +     const __m256i rss_flags_shuf =
> +             _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
> +                             PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
> +                             0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
> +                             0, 0, 0, 0, 0, 0, 0, 0,
> +                             PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
> +                             0, 0, 0, 0, PKT_RX_FDIR, 0);
> +
> +     /**
> +      * data to be shuffled by the result of the flags mask shifted by 22
> +      * bits.  This gives use the l3_l4 flags.
> +      */
> +     const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
> +                     /* shift right 1 bit to make sure it not exceed 255 */
> +                     (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
> +                      PKT_RX_IP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
> +                      PKT_RX_L4_CKSUM_BAD) >> 1,
> +                     (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
> +                     PKT_RX_IP_CKSUM_BAD >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
> +                     /* second 128-bits */
> +                     0, 0, 0, 0, 0, 0, 0, 0,
> +                     (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
> +                      PKT_RX_IP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
> +                      PKT_RX_L4_CKSUM_BAD) >> 1,
> +                     (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
> +                     PKT_RX_IP_CKSUM_BAD >> 1,
> +                     (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
> +
> +     const __m256i cksum_mask =
> +              _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
> +                                PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
> +                                PKT_RX_EIP_CKSUM_BAD);
> +
> +     RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
> +
> +     uint16_t i, received;
> +
> +     for (i = 0, received = 0; i < nb_pkts;
> +          i += IAVF_DESCS_PER_LOOP_AVX,
> +          rxdp += IAVF_DESCS_PER_LOOP_AVX) {
> +             /* step 1, copy over 8 mbuf pointers to rx_pkts array */
> +             _mm256_storeu_si256((void *)&rx_pkts[i],
> +                                 _mm256_loadu_si256((void *)&sw_ring[i]));
> +#ifdef RTE_ARCH_X86_64
> +             _mm256_storeu_si256
> +                     ((void *)&rx_pkts[i + 4],
> +                      _mm256_loadu_si256((void *)&sw_ring[i + 4]));
> +#endif
> +
> +             __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
> +#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
> +             /* for AVX we need alignment otherwise loads are not atomic */
> +             if (avx_aligned) {
> +                     /* load in descriptors, 2 at a time, in reverse order */
> +                     raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
> +                     rte_compiler_barrier();
> +                     raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
> +                     rte_compiler_barrier();
> +                     raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
> +                     rte_compiler_barrier();
> +                     raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
> +             } else
> +#endif
> +             {
> +                     const __m128i raw_desc7 =
> +                             _mm_load_si128((void *)(rxdp + 7));
> +                     rte_compiler_barrier();
> +                     const __m128i raw_desc6 =
> +                             _mm_load_si128((void *)(rxdp + 6));
> +                     rte_compiler_barrier();
> +                     const __m128i raw_desc5 =
> +                             _mm_load_si128((void *)(rxdp + 5));
> +                     rte_compiler_barrier();
> +                     const __m128i raw_desc4 =
> +                             _mm_load_si128((void *)(rxdp + 4));
> +                     rte_compiler_barrier();
> +                     const __m128i raw_desc3 =
> +                             _mm_load_si128((void *)(rxdp + 3));
> +                     rte_compiler_barrier();
> +                     const __m128i raw_desc2 =
> +                             _mm_load_si128((void *)(rxdp + 2));
> +                     rte_compiler_barrier();
> +                     const __m128i raw_desc1 =
> +                             _mm_load_si128((void *)(rxdp + 1));
> +                     rte_compiler_barrier();
> +                     const __m128i raw_desc0 =
> +                             _mm_load_si128((void *)(rxdp + 0));
> +
> +                     raw_desc6_7 =
> +                             _mm256_inserti128_si256
> +                                     (_mm256_castsi128_si256(raw_desc6),
> +                                      raw_desc7, 1);
> +                     raw_desc4_5 =
> +                             _mm256_inserti128_si256
> +                                     (_mm256_castsi128_si256(raw_desc4),
> +                                      raw_desc5, 1);
> +                     raw_desc2_3 =
> +                             _mm256_inserti128_si256
> +                                     (_mm256_castsi128_si256(raw_desc2),
> +                                      raw_desc3, 1);
> +                     raw_desc0_1 =
> +                             _mm256_inserti128_si256
> +                                     (_mm256_castsi128_si256(raw_desc0),
> +                                      raw_desc1, 1);
> +             }
> +
> +             if (split_packet) {
> +                     int j;
> +
> +                     for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
> +                             rte_mbuf_prefetch_part2(rx_pkts[i + j]);
> +             }
> +
> +             /**
> +              * convert descriptors 4-7 into mbufs, adjusting length and
> +              * re-arranging fields. Then write into the mbuf
> +              */
> +             const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
> +                                                      PKTLEN_SHIFT);
> +             const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
> +                                                      PKTLEN_SHIFT);
> +             const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
> +                                                        len6_7, 0x80);
> +             const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
> +                                                        len4_5, 0x80);
> +             __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
> +             __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
> +
> +             mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
> +             mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
> +             /**
> +              * to get packet types, shift 64-bit values down 30 bits
> +              * and so ptype is in lower 8-bits in each
> +              */
> +             const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
> +             const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
> +             const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
> +             const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
> +             const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
> +             const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
> +
> +             mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
> +             mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
> +             mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
> +             mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
> +             /* merge the status bits into one register */
> +             const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
> +                             desc4_5);
> +
> +             /**
> +              * convert descriptors 0-3 into mbufs, adjusting length and
> +              * re-arranging fields. Then write into the mbuf
> +              */
> +             const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
> +                                                      PKTLEN_SHIFT);
> +             const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
> +                                                      PKTLEN_SHIFT);
> +             const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
> +                                                        len2_3, 0x80);
> +             const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
> +                                                        len0_1, 0x80);
> +             __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
> +             __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
> +
> +             mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
> +             mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
> +             /* get the packet types */
> +             const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
> +             const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
> +             const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
> +             const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
> +             const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
> +             const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
> +
> +             mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
> +             mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
> +             mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
> +             mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
> +             /* merge the status bits into one register */
> +             const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
> +                                                             desc0_1);
> +
> +             /**
> +              * take the two sets of status bits and merge to one
> +              * After merge, the packets status flags are in the
> +              * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
> +              */
> +             __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
> +                                                       status0_3);
> +
> +             /* now do flag manipulation */
> +
> +             /* get only flag/error bits we want */
> +             const __m256i flag_bits =
> +                     _mm256_and_si256(status0_7, flags_mask);
> +             /* set vlan and rss flags */
> +             const __m256i vlan_flags =
> +                     _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
> +             const __m256i rss_flags =
> +                     _mm256_shuffle_epi8(rss_flags_shuf,
> +                                         _mm256_srli_epi32(flag_bits, 11));
> +             /**
> +              * l3_l4_error flags, shuffle, then shift to correct adjustment
> +              * of flags in flags_shuf, and finally mask out extra bits
> +              */
> +             __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
> +                             _mm256_srli_epi32(flag_bits, 22));
> +             l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
> +             l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
> +
> +             /* merge flags */
> +             const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
> +                             _mm256_or_si256(rss_flags, vlan_flags));
> +             /**
> +              * At this point, we have the 8 sets of flags in the low 16-bits
> +              * of each 32-bit value in vlan0.
> +              * We want to extract these, and merge them with the mbuf init
> +              * data so we can do a single write to the mbuf to set the flags
> +              * and all the other initialization fields. Extracting the
> +              * appropriate flags means that we have to do a shift and blend
> +              * for each mbuf before we do the write. However, we can also
> +              * add in the previously computed rx_descriptor fields to
> +              * make a single 256-bit write per mbuf
> +              */
> +             /* check the structure matches expectations */
> +             RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
> +                              offsetof(struct rte_mbuf, rearm_data) + 8);
> +             RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
> +                              RTE_ALIGN(offsetof(struct rte_mbuf,
> +                                                 rearm_data),
> +                                        16));
> +             /* build up data and do writes */
> +             __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
> +                     rearm6, rearm7;
> +             rearm6 = _mm256_blend_epi32(mbuf_init,
> +                                         _mm256_slli_si256(mbuf_flags, 8),
> +                                         0x04);
> +             rearm4 = _mm256_blend_epi32(mbuf_init,
> +                                         _mm256_slli_si256(mbuf_flags, 4),
> +                                         0x04);
> +             rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
> +             rearm0 = _mm256_blend_epi32(mbuf_init,
> +                                         _mm256_srli_si256(mbuf_flags, 4),
> +                                         0x04);
> +             /* permute to add in the rx_descriptor e.g. rss fields */
> +             rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
> +             rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
> +             rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
> +             rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
> +             /* write to mbuf */
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
> +                                 rearm6);
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
> +                                 rearm4);
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
> +                                 rearm2);
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
> +                                 rearm0);
> +
> +             /* repeat for the odd mbufs */
> +             const __m256i odd_flags =
> +                     _mm256_castsi128_si256
> +                             (_mm256_extracti128_si256(mbuf_flags, 1));
> +             rearm7 = _mm256_blend_epi32(mbuf_init,
> +                                         _mm256_slli_si256(odd_flags, 8),
> +                                         0x04);
> +             rearm5 = _mm256_blend_epi32(mbuf_init,
> +                                         _mm256_slli_si256(odd_flags, 4),
> +                                         0x04);
> +             rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
> +             rearm1 = _mm256_blend_epi32(mbuf_init,
> +                                         _mm256_srli_si256(odd_flags, 4),
> +                                         0x04);
> +             /* since odd mbufs are already in hi 128-bits use blend */
> +             rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
> +             rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
> +             rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
> +             rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
> +             /* again write to mbufs */
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
> +                                 rearm7);
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
> +                                 rearm5);
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
> +                                 rearm3);
> +             _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
> +                                 rearm1);
> +
> +             /* extract and record EOP bit */
> +             if (split_packet) {
> +                     const __m128i eop_mask =
> +                             _mm_set1_epi16(1 << 
> IAVF_RX_DESC_STATUS_EOF_SHIFT);
> +                     const __m256i eop_bits256 = _mm256_and_si256(status0_7,
> +                                                                  eop_check);
> +                     /* pack status bits into a single 128-bit register */
> +                     const __m128i eop_bits =
> +                             _mm_packus_epi32
> +                                     (_mm256_castsi256_si128(eop_bits256),
> +                                      _mm256_extractf128_si256(eop_bits256,
> +                                                               1));
> +                     /**
> +                      * flip bits, and mask out the EOP bit, which is now
> +                      * a split-packet bit i.e. !EOP, rather than EOP one.
> +                      */
> +                     __m128i split_bits = _mm_andnot_si128(eop_bits,
> +                                     eop_mask);
> +                     /**
> +                      * eop bits are out of order, so we need to shuffle them
> +                      * back into order again. In doing so, only use low 8
> +                      * bits, which acts like another pack instruction
> +                      * The original order is (hi->lo): 1,3,5,7,0,2,4,6
> +                      * [Since we use epi8, the 16-bit positions are
> +                      * multiplied by 2 in the eop_shuffle value.]
> +                      */
> +                     __m128i eop_shuffle =
> +                             _mm_set_epi8(/* zero hi 64b */
> +                                          0xFF, 0xFF, 0xFF, 0xFF,
> +                                          0xFF, 0xFF, 0xFF, 0xFF,
> +                                          /* move values to lo 64b */
> +                                          8, 0, 10, 2,
> +                                          12, 4, 14, 6);
> +                     split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
> +                     *(uint64_t *)split_packet =
> +                             _mm_cvtsi128_si64(split_bits);
> +                     split_packet += IAVF_DESCS_PER_LOOP_AVX;
> +             }
> +
> +             /* perform dd_check */
> +             status0_7 = _mm256_and_si256(status0_7, dd_check);
> +             status0_7 = _mm256_packs_epi32(status0_7,
> +                                            _mm256_setzero_si256());
> +
> +             uint64_t burst = __builtin_popcountll
> +                                     (_mm_cvtsi128_si64
> +                                             (_mm256_extracti128_si256
> +                                                     (status0_7, 1)));
> +             burst += __builtin_popcountll
> +                             (_mm_cvtsi128_si64
> +                                     (_mm256_castsi256_si128(status0_7)));
> +             received += burst;
> +             if (burst != IAVF_DESCS_PER_LOOP_AVX)
> +                     break;
> +     }
> +
> +     /* update tail pointers */
> +     rxq->rx_tail += received;
> +     rxq->rx_tail &= (rxq->nb_rx_desc - 1);
> +     if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
> +             rxq->rx_tail--;
> +             received--;
> +     }
> +     rxq->rxrearm_nb += received;
> +     return received;
> +}
> +
> +/**
> + * Notice:
> + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
> + */
> +uint16_t
> +iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> +                     uint16_t nb_pkts)
> +{
> +     return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
> +}
> +
> +/**
> + * vPMD receive routine that reassembles single burst of 32 scattered packets
> + * Notice:
> + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
> + */
> +static uint16_t
> +iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> +                                uint16_t nb_pkts)
> +{
> +     struct iavf_rx_queue *rxq = rx_queue;
> +     uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
> +
> +     /* get some new buffers */
> +     uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
> +                                                    split_flags);
> +     if (nb_bufs == 0)
> +             return 0;
> +
> +     /* happy day case, full burst + no packets to be joined */
> +     const uint64_t *split_fl64 = (uint64_t *)split_flags;
> +
> +     if (!rxq->pkt_first_seg &&
> +         split_fl64[0] == 0 && split_fl64[1] == 0 &&
> +         split_fl64[2] == 0 && split_fl64[3] == 0)
> +             return nb_bufs;
> +
> +     /* reassemble any packets that need reassembly*/
> +     unsigned int i = 0;
> +
> +     if (!rxq->pkt_first_seg) {
> +             /* find the first split flag, and only reassemble then*/
> +             while (i < nb_bufs && !split_flags[i])
> +                     i++;
> +             if (i == nb_bufs)
> +                     return nb_bufs;
> +             rxq->pkt_first_seg = rx_pkts[i];
> +     }
> +     return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
> +                                          &split_flags[i]);
> +}
> +
> +/**
> + * vPMD receive routine that reassembles scattered packets.
> + * Main receive routine that can handle arbitrary burst sizes
> + * Notice:
> + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
> + */
> +uint16_t
> +iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> +                               uint16_t nb_pkts)
> +{
> +     uint16_t retval = 0;
> +
> +     while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
> +             uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
> +                             rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
> +             retval += burst;
> +             nb_pkts -= burst;
> +             if (burst < IAVF_VPMD_RX_MAX_BURST)
> +                     return retval;
> +     }
> +     return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
> +                             rx_pkts + retval, nb_pkts);
> +}
> +
> +static inline void
> +iavf_vtx1(volatile struct iavf_tx_desc *txdp,
> +       struct rte_mbuf *pkt, uint64_t flags)
> +{
> +     uint64_t high_qw =
> +             (IAVF_TX_DESC_DTYPE_DATA |
> +              ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
> +              ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
> +
> +     __m128i descriptor = _mm_set_epi64x(high_qw,
> +                             pkt->buf_physaddr + pkt->data_off);
> +     _mm_store_si128((__m128i *)txdp, descriptor);
> +}
> +
> +static inline void
> +iavf_vtx(volatile struct iavf_tx_desc *txdp,
> +      struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
> +{
> +     const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
> +                     ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT));
> +
> +     /* if unaligned on 32-bit boundary, do one to align */
> +     if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
> +             iavf_vtx1(txdp, *pkt, flags);
> +             nb_pkts--, txdp++, pkt++;
> +     }
> +
> +     /* do two at a time while possible, in bursts */
> +     for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
> +             uint64_t hi_qw3 =
> +                     hi_qw_tmpl |
> +                     ((uint64_t)pkt[3]->data_len <<
> +                      IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> +             uint64_t hi_qw2 =
> +                     hi_qw_tmpl |
> +                     ((uint64_t)pkt[2]->data_len <<
> +                      IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> +             uint64_t hi_qw1 =
> +                     hi_qw_tmpl |
> +                     ((uint64_t)pkt[1]->data_len <<
> +                      IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> +             uint64_t hi_qw0 =
> +                     hi_qw_tmpl |
> +                     ((uint64_t)pkt[0]->data_len <<
> +                      IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> +
> +             __m256i desc2_3 =
> +                     _mm256_set_epi64x
> +                             (hi_qw3,
> +                              pkt[3]->buf_physaddr + pkt[3]->data_off,
> +                              hi_qw2,
> +                              pkt[2]->buf_physaddr + pkt[2]->data_off);
> +             __m256i desc0_1 =
> +                     _mm256_set_epi64x
> +                             (hi_qw1,
> +                              pkt[1]->buf_physaddr + pkt[1]->data_off,
> +                              hi_qw0,
> +                              pkt[0]->buf_physaddr + pkt[0]->data_off);
> +             _mm256_store_si256((void *)(txdp + 2), desc2_3);
> +             _mm256_store_si256((void *)txdp, desc0_1);
> +     }
> +
> +     /* do any last ones */
> +     while (nb_pkts) {
> +             iavf_vtx1(txdp, *pkt, flags);
> +             txdp++, pkt++, nb_pkts--;
> +     }
> +}
> +
> +static inline uint16_t
> +iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
> +                            uint16_t nb_pkts)
> +{
> +     struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
> +     volatile struct iavf_tx_desc *txdp;
> +     struct iavf_tx_entry *txep;
> +     uint16_t n, nb_commit, tx_id;
> +     uint64_t flags = IAVF_TX_DESC_CMD_EOP;
> +     uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP;
> +
> +     /* cross rx_thresh boundary is not allowed */
> +     nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
> +
> +     if (txq->nb_free < txq->free_thresh)
> +             iavf_tx_free_bufs(txq);
> +
> +     nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
> +     if (unlikely(nb_pkts == 0))
> +             return 0;
> +
> +     tx_id = txq->tx_tail;
> +     txdp = &txq->tx_ring[tx_id];
> +     txep = &txq->sw_ring[tx_id];
> +
> +     txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
> +
> +     n = (uint16_t)(txq->nb_tx_desc - tx_id);
> +     if (nb_commit >= n) {
> +             tx_backlog_entry(txep, tx_pkts, n);
> +
> +             iavf_vtx(txdp, tx_pkts, n - 1, flags);
> +             tx_pkts += (n - 1);
> +             txdp += (n - 1);
> +
> +             iavf_vtx1(txdp, *tx_pkts++, rs);
> +
> +             nb_commit = (uint16_t)(nb_commit - n);
> +
> +             tx_id = 0;
> +             txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
> +
> +             /* avoid reach the end of ring */
> +             txdp = &txq->tx_ring[tx_id];
> +             txep = &txq->sw_ring[tx_id];
> +     }
> +
> +     tx_backlog_entry(txep, tx_pkts, nb_commit);
> +
> +     iavf_vtx(txdp, tx_pkts, nb_commit, flags);
> +
> +     tx_id = (uint16_t)(tx_id + nb_commit);
> +     if (tx_id > txq->next_rs) {
> +             txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
> +                     rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
> +                                      IAVF_TXD_QW1_CMD_SHIFT);
> +             txq->next_rs =
> +                     (uint16_t)(txq->next_rs + txq->rs_thresh);
> +     }
> +
> +     txq->tx_tail = tx_id;
> +
> +     IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
> +
> +     return nb_pkts;
> +}
> +
> +uint16_t
> +iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
> +                     uint16_t nb_pkts)
> +{
> +     uint16_t nb_tx = 0;
> +     struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
> +
> +     while (nb_pkts) {
> +             uint16_t ret, num;
> +
> +             num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
> +             ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
> +                                                  num);
> +             nb_tx += ret;
> +             nb_pkts -= ret;
> +             if (ret < num)
> +                     break;
> +     }
> +
> +     return nb_tx;
> +}
> diff --git a/drivers/net/iavf/iavf_rxtx_vec_common.h 
> b/drivers/net/iavf/iavf_rxtx_vec_common.h
> index db509d71f..fff0555d2 100644
> --- a/drivers/net/iavf/iavf_rxtx_vec_common.h
> +++ b/drivers/net/iavf/iavf_rxtx_vec_common.h
> @@ -207,4 +207,76 @@ iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq)
>       rxq->mbuf_initializer = *(uint64_t *)p;
>       return 0;
>  }
> +
> +static inline int
> +iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
> +{
> +     if (!rxq)
> +             return -1;
> +
> +     if (!rte_is_power_of_2(rxq->nb_rx_desc))
> +             return -1;
> +
> +     if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST)
> +             return -1;
> +
> +     if (rxq->nb_rx_desc % rxq->rx_free_thresh)
> +             return -1;
> +
> +     return 0;
> +}
> +
> +#define IAVF_NO_VECTOR_FLAGS (                                \
> +             DEV_TX_OFFLOAD_MULTI_SEGS |              \
> +             DEV_TX_OFFLOAD_VLAN_INSERT |             \
> +             DEV_TX_OFFLOAD_SCTP_CKSUM |              \
> +             DEV_TX_OFFLOAD_UDP_CKSUM |               \
> +             DEV_TX_OFFLOAD_TCP_CKSUM)
> +
> +static inline int
> +iavf_tx_vec_queue_default(struct iavf_tx_queue *txq)
> +{
> +     if (!txq)
> +             return -1;
> +
> +     if (txq->offloads & IAVF_NO_VECTOR_FLAGS)
> +             return -1;
> +
> +     if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST ||
> +         txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF)
> +             return -1;
> +
> +     return 0;
> +}
> +
> +static inline int
> +iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
> +{
> +     int i;
> +     struct iavf_rx_queue *rxq;
> +
> +     for (i = 0; i < dev->data->nb_rx_queues; i++) {
> +             rxq = dev->data->rx_queues[i];
> +             if (iavf_rx_vec_queue_default(rxq))
> +                     return -1;
> +     }
> +
> +     return 0;
> +}
> +
> +static inline int
> +iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
> +{
> +     int i;
> +     struct iavf_tx_queue *txq;
> +
> +     for (i = 0; i < dev->data->nb_tx_queues; i++) {
> +             txq = dev->data->tx_queues[i];
> +             if (iavf_tx_vec_queue_default(txq))
> +                     return -1;
> +     }
> +
> +     return 0;
> +}
> +
>  #endif
> diff --git a/drivers/net/iavf/iavf_rxtx_vec_sse.c 
> b/drivers/net/iavf/iavf_rxtx_vec_sse.c
> index cc71f23a5..15c52a4c2 100644
> --- a/drivers/net/iavf/iavf_rxtx_vec_sse.c
> +++ b/drivers/net/iavf/iavf_rxtx_vec_sse.c
> @@ -655,3 +655,15 @@ iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
>       rxq->ops = &sse_vec_rxq_ops;
>       return iavf_rxq_vec_setup_default(rxq);
>  }
> +
> +int __attribute__((cold))
> +iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
> +{
> +     return iavf_rx_vec_dev_check_default(dev);
> +}
> +
> +int __attribute__((cold))
> +iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
> +{
> +     return iavf_tx_vec_dev_check_default(dev);
> +}
> diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build
> index e5a2f5553..c2401af86 100644
> --- a/drivers/net/iavf/meson.build
> +++ b/drivers/net/iavf/meson.build
> @@ -17,4 +17,21 @@ sources = files(
>  if arch_subdir == 'x86'
>       dpdk_conf.set('RTE_LIBRTE_IAVF_INC_VECTOR', 1)
>       sources += files('iavf_rxtx_vec_sse.c')
> +
> +     # compile AVX2 version if either:
> +     # a. we have AVX supported in minimum instruction set baseline
> +     # b. it's not minimum instruction set, but supported by compiler
> +     if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2')
> +             cflags += ['-DCC_AVX2_SUPPORT']
> +             sources += files('iavf_rxtx_vec_avx2.c')
> +     elif cc.has_argument('-mavx2')
> +             cflags += ['-DCC_AVX2_SUPPORT']
> +             iavf_avx2_lib = static_library('iavf_avx2_lib',
> +                             'iavf_rxtx_vec_avx2.c',
> +                             dependencies: [static_rte_ethdev,
> +                                     static_rte_kvargs, static_rte_hash],
> +                             include_directories: includes,
> +                             c_args: [cflags, '-mavx2'])
> +             objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c')
> +     endif
>  endif

Reply via email to