Leyi Rong <leyi.r...@intel.com> writes: > This patch enables AVX data path for iavf PMD. > > Signed-off-by: Leyi Rong <leyi.r...@intel.com> > --- > drivers/net/iavf/Makefile | 21 + > drivers/net/iavf/iavf_rxtx.c | 62 +- > drivers/net/iavf/iavf_rxtx.h | 10 + > drivers/net/iavf/iavf_rxtx_vec_avx2.c | 867 ++++++++++++++++++++++++ > drivers/net/iavf/iavf_rxtx_vec_common.h | 72 ++ > drivers/net/iavf/iavf_rxtx_vec_sse.c | 12 + > drivers/net/iavf/meson.build | 17 + > 7 files changed, 1041 insertions(+), 20 deletions(-) > create mode 100644 drivers/net/iavf/iavf_rxtx_vec_avx2.c > > diff --git a/drivers/net/iavf/Makefile b/drivers/net/iavf/Makefile > index cd74e14ab..cf0ed99f0 100644 > --- a/drivers/net/iavf/Makefile > +++ b/drivers/net/iavf/Makefile > @@ -48,4 +48,25 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y) > SRCS-$(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR) += iavf_rxtx_vec_sse.c > endif > > +ifeq ($(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR), y) > + ifeq ($(findstring > RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2) > + CC_AVX2_SUPPORT=1 > + else > + CC_AVX2_SUPPORT=\ > + $(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \ > + grep -q AVX2 && echo 1) > + ifeq ($(CC_AVX2_SUPPORT), 1) > + ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y) > + CFLAGS_iavf_rxtx_vec_avx2.o += -march=core-avx2 > + else > + CFLAGS_iavf_rxtx_vec_avx2.o += -mavx2 > + endif > + endif > + endif > +endif > + > +ifeq ($(CC_AVX2_SUPPORT), 1) > + SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_avx2.c > +endif > + > include $(RTE_SDK)/mk/rte.lib.mk > diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c > index 22d7bb612..2eb496d5f 100644 > --- a/drivers/net/iavf/iavf_rxtx.c > +++ b/drivers/net/iavf/iavf_rxtx.c > @@ -1743,23 +1743,36 @@ iavf_set_rx_function(struct rte_eth_dev *dev) > IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); > struct iavf_rx_queue *rxq; > int i; > + bool use_avx2 = false; > > - if (adapter->rx_vec_allowed) { > - if (dev->data->scattered_rx) { > - PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback" > - " (port=%d).", dev->data->port_id); > - dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec; > - } else { > - PMD_DRV_LOG(DEBUG, "Using Vector Rx callback" > - " (port=%d).", dev->data->port_id); > - dev->rx_pkt_burst = iavf_recv_pkts_vec; > - } > + if (!iavf_rx_vec_dev_check(dev)) { > for (i = 0; i < dev->data->nb_rx_queues; i++) { > rxq = dev->data->rx_queues[i]; > - if (!rxq) > - continue; > - iavf_rxq_vec_setup(rxq); > + (void)iavf_rxq_vec_setup(rxq); > } > + > + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || > + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) > + use_avx2 = true;
This will cause a build failure on aarch64 systems. ex: ../drivers/net/iavf/iavf_rxtx.c:1754:7: error: implicit declaration of function ‘rte_cpu_get_flag_enabled’ [-Werror=implicit-function-declaration] if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || ^ ../drivers/net/iavf/iavf_rxtx.c:1754:32: error: ‘RTE_CPUFLAG_AVX2’ undeclared (first use in this function) if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || ^ ../drivers/net/iavf/iavf_rxtx.c:1754:32: note: each undeclared identifier is reported only once for each function it appears in ../drivers/net/iavf/iavf_rxtx.c:1755:32: error: ‘RTE_CPUFLAG_AVX512F’ undeclared (first use in this function) rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) ^ ../drivers/net/iavf/iavf_rxtx.c: In function ‘iavf_set_tx_function’: ../drivers/net/iavf/iavf_rxtx.c:1807:32: error: ‘RTE_CPUFLAG_AVX2’ undeclared (first use in this function) if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || ^ ../drivers/net/iavf/iavf_rxtx.c:1808:32: error: ‘RTE_CPUFLAG_AVX512F’ undeclared (first use in this function) rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) ^ > + if (dev->data->scattered_rx) { > + PMD_DRV_LOG(DEBUG, > + "Using %sVector Scattered Rx (port %d).", > + use_avx2 ? "avx2 " : "", > + dev->data->port_id); > + dev->rx_pkt_burst = use_avx2 ? > + iavf_recv_scattered_pkts_vec_avx2 : > + iavf_recv_scattered_pkts_vec; > + } else { > + PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).", > + use_avx2 ? "avx2 " : "", > + dev->data->port_id); > + dev->rx_pkt_burst = use_avx2 ? > + iavf_recv_pkts_vec_avx2 : > + iavf_recv_pkts_vec; > + } > + > + return; > } else if (dev->data->scattered_rx) { > PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).", > dev->data->port_id); > @@ -1779,22 +1792,31 @@ iavf_set_rx_function(struct rte_eth_dev *dev) > void > iavf_set_tx_function(struct rte_eth_dev *dev) > { > - struct iavf_adapter *adapter = > - IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); > struct iavf_tx_queue *txq; > int i; > + bool use_avx2 = false; > > - if (adapter->tx_vec_allowed) { > - PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).", > - dev->data->port_id); > - dev->tx_pkt_burst = iavf_xmit_pkts_vec; > - dev->tx_pkt_prepare = NULL; > + if (!iavf_tx_vec_dev_check(dev)) { > for (i = 0; i < dev->data->nb_tx_queues; i++) { > txq = dev->data->tx_queues[i]; > if (!txq) > continue; > iavf_txq_vec_setup(txq); > } > + > + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || > + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) > + use_avx2 = true; > + > + PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).", > + use_avx2 ? "avx2 " : "", > + dev->data->port_id); > + dev->tx_pkt_burst = use_avx2 ? > + iavf_xmit_pkts_vec_avx2 : > + iavf_xmit_pkts_vec; > + dev->tx_pkt_prepare = NULL; > + > + return; > } else { > PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).", > dev->data->port_id); > diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h > index c86720bda..7dde392bf 100644 > --- a/drivers/net/iavf/iavf_rxtx.h > +++ b/drivers/net/iavf/iavf_rxtx.h > @@ -19,6 +19,7 @@ > /* used for Vector PMD */ > #define IAVF_VPMD_RX_MAX_BURST 32 > #define IAVF_VPMD_TX_MAX_BURST 32 > +#define IAVF_RXQ_REARM_THRESH 32 > #define IAVF_VPMD_DESCS_PER_LOOP 4 > #define IAVF_VPMD_TX_MAX_FREE_BUF 64 > > @@ -200,6 +201,15 @@ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue, > uint16_t nb_pkts); > uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, > uint16_t nb_pkts); > +uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, > + uint16_t nb_pkts); > +uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, > + struct rte_mbuf **rx_pkts, > + uint16_t nb_pkts); > +uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, > + uint16_t nb_pkts); > +int iavf_rx_vec_dev_check(struct rte_eth_dev *dev); > +int iavf_tx_vec_dev_check(struct rte_eth_dev *dev); > int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq); > int iavf_txq_vec_setup(struct iavf_tx_queue *txq); > > diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c > b/drivers/net/iavf/iavf_rxtx_vec_avx2.c > new file mode 100644 > index 000000000..f0c00be56 > --- /dev/null > +++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c > @@ -0,0 +1,867 @@ > +/* SPDX-License-Identifier: BSD-3-Clause > + * Copyright(c) 2019 Intel Corporation > + */ > + > +#include "base/iavf_prototype.h" > +#include "iavf_rxtx_vec_common.h" > + > +#include <x86intrin.h> > + > +#ifndef __INTEL_COMPILER > +#pragma GCC diagnostic ignored "-Wcast-qual" > +#endif > + > +static inline void > +iavf_rxq_rearm(struct iavf_rx_queue *rxq) > +{ > + int i; > + uint16_t rx_id; > + volatile union iavf_rx_desc *rxdp; > + struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; > + > + rxdp = rxq->rx_ring + rxq->rxrearm_start; > + > + /* Pull 'n' more MBUFs into the software ring */ > + if (rte_mempool_get_bulk(rxq->mp, > + (void *)rxp, > + IAVF_RXQ_REARM_THRESH) < 0) { > + if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >= > + rxq->nb_rx_desc) { > + __m128i dma_addr0; > + > + dma_addr0 = _mm_setzero_si128(); > + for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) { > + rxp[i] = &rxq->fake_mbuf; > + _mm_store_si128((__m128i *)&rxdp[i].read, > + dma_addr0); > + } > + } > + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += > + IAVF_RXQ_REARM_THRESH; > + return; > + } > + > +#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC > + struct rte_mbuf *mb0, *mb1; > + __m128i dma_addr0, dma_addr1; > + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, > + RTE_PKTMBUF_HEADROOM); > + /* Initialize the mbufs in vector, process 2 mbufs in one loop */ > + for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) { > + __m128i vaddr0, vaddr1; > + > + mb0 = rxp[0]; > + mb1 = rxp[1]; > + > + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != > + offsetof(struct rte_mbuf, buf_addr) + 8); > + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); > + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); > + > + /* convert pa to dma_addr hdr/data */ > + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); > + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); > + > + /* add headroom to pa values */ > + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); > + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); > + > + /* flush desc with pa dma_addr */ > + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); > + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); > + } > +#else > + struct rte_mbuf *mb0, *mb1, *mb2, *mb3; > + __m256i dma_addr0_1, dma_addr2_3; > + __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); > + /* Initialize the mbufs in vector, process 4 mbufs in one loop */ > + for (i = 0; i < IAVF_RXQ_REARM_THRESH; > + i += 4, rxp += 4, rxdp += 4) { > + __m128i vaddr0, vaddr1, vaddr2, vaddr3; > + __m256i vaddr0_1, vaddr2_3; > + > + mb0 = rxp[0]; > + mb1 = rxp[1]; > + mb2 = rxp[2]; > + mb3 = rxp[3]; > + > + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != > + offsetof(struct rte_mbuf, buf_addr) + 8); > + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); > + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); > + vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); > + vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); > + > + /** > + * merge 0 & 1, by casting 0 to 256-bit and inserting 1 > + * into the high lanes. Similarly for 2 & 3 > + */ > + vaddr0_1 = > + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), > + vaddr1, 1); > + vaddr2_3 = > + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), > + vaddr3, 1); > + > + /* convert pa to dma_addr hdr/data */ > + dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1); > + dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3); > + > + /* add headroom to pa values */ > + dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room); > + dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room); > + > + /* flush desc with pa dma_addr */ > + _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1); > + _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3); > + } > + > +#endif > + > + rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH; > + if (rxq->rxrearm_start >= rxq->nb_rx_desc) > + rxq->rxrearm_start = 0; > + > + rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH; > + > + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? > + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); > + > + /* Update the tail pointer on the NIC */ > + IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); > +} > + > +#define PKTLEN_SHIFT 10 > + > +static inline uint16_t > +_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq, > + struct rte_mbuf **rx_pkts, > + uint16_t nb_pkts, uint8_t *split_packet) > +{ > +#define IAVF_DESCS_PER_LOOP_AVX 8 > + > + /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */ > + static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = { > + /* [0] reserved */ > + [1] = RTE_PTYPE_L2_ETHER, > + /* [2] - [21] reserved */ > + [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | > + RTE_PTYPE_L4_FRAG, > + [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | > + RTE_PTYPE_L4_NONFRAG, > + [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | > + RTE_PTYPE_L4_UDP, > + /* [25] reserved */ > + [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | > + RTE_PTYPE_L4_TCP, > + [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | > + RTE_PTYPE_L4_SCTP, > + [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | > + RTE_PTYPE_L4_ICMP, > + /* All others reserved */ > + }; > + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, > + 0, rxq->mbuf_initializer); > + /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */ > + struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; > + volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail; > + const int avx_aligned = ((rxq->rx_tail & 1) == 0); > + > + rte_prefetch0(rxdp); > + > + /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */ > + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX); > + > + /* See if we need to rearm the RX queue - gives the prefetch a bit > + * of time to act > + */ > + if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) > + iavf_rxq_rearm(rxq); > + > + /* Before we start moving massive data around, check to see if > + * there is actually a packet available > + */ > + if (!(rxdp->wb.qword1.status_error_len & > + rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT))) > + return 0; > + > + /* constants used in processing loop */ > + const __m256i crc_adjust = > + _mm256_set_epi16 > + (/* first descriptor */ > + 0, 0, 0, /* ignore non-length fields */ > + -rxq->crc_len, /* sub crc on data_len */ > + 0, /* ignore high-16bits of pkt_len */ > + -rxq->crc_len, /* sub crc on pkt_len */ > + 0, 0, /* ignore pkt_type field */ > + /* second descriptor */ > + 0, 0, 0, /* ignore non-length fields */ > + -rxq->crc_len, /* sub crc on data_len */ > + 0, /* ignore high-16bits of pkt_len */ > + -rxq->crc_len, /* sub crc on pkt_len */ > + 0, 0 /* ignore pkt_type field */ > + ); > + > + /* 8 packets DD mask, LSB in each 32-bit value */ > + const __m256i dd_check = _mm256_set1_epi32(1); > + > + /* 8 packets EOP mask, second-LSB in each 32-bit value */ > + const __m256i eop_check = _mm256_slli_epi32(dd_check, > + IAVF_RX_DESC_STATUS_EOF_SHIFT); > + > + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ > + const __m256i shuf_msk = > + _mm256_set_epi8 > + (/* first descriptor */ > + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ > + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ > + 15, 14, /* octet 15~14, 16 bits data_len */ > + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ > + 15, 14, /* octet 15~14, low 16 bits pkt_len */ > + 0xFF, 0xFF, /* pkt_type set as unknown */ > + 0xFF, 0xFF, /*pkt_type set as unknown */ > + /* second descriptor */ > + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ > + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ > + 15, 14, /* octet 15~14, 16 bits data_len */ > + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ > + 15, 14, /* octet 15~14, low 16 bits pkt_len */ > + 0xFF, 0xFF, /* pkt_type set as unknown */ > + 0xFF, 0xFF /*pkt_type set as unknown */ > + ); > + /** > + * compile-time check the above crc and shuffle layout is correct. > + * NOTE: the first field (lowest address) is given last in set_epi > + * calls above. > + */ > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != > + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != > + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != > + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != > + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); > + > + /* Status/Error flag masks */ > + /** > + * mask everything except RSS, flow director and VLAN flags > + * bit2 is for VLAN tag, bit11 for flow director indication > + * bit13:12 for RSS indication. Bits 3-5 of error > + * field (bits 22-24) are for IP/L4 checksum errors > + */ > + const __m256i flags_mask = > + _mm256_set1_epi32((1 << 2) | (1 << 11) | > + (3 << 12) | (7 << 22)); > + /** > + * data to be shuffled by result of flag mask. If VLAN bit is set, > + * (bit 2), then position 4 in this array will be used in the > + * destination > + */ > + const __m256i vlan_flags_shuf = > + _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, > + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); > + /** > + * data to be shuffled by result of flag mask, shifted down 11. > + * If RSS/FDIR bits are set, shuffle moves appropriate flags in > + * place. > + */ > + const __m256i rss_flags_shuf = > + _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, > + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, > + 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */ > + 0, 0, 0, 0, 0, 0, 0, 0, > + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, > + 0, 0, 0, 0, PKT_RX_FDIR, 0); > + > + /** > + * data to be shuffled by the result of the flags mask shifted by 22 > + * bits. This gives use the l3_l4 flags. > + */ > + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, > + /* shift right 1 bit to make sure it not exceed 255 */ > + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | > + PKT_RX_IP_CKSUM_BAD) >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | > + PKT_RX_L4_CKSUM_BAD) >> 1, > + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, > + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, > + PKT_RX_IP_CKSUM_BAD >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, > + /* second 128-bits */ > + 0, 0, 0, 0, 0, 0, 0, 0, > + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | > + PKT_RX_IP_CKSUM_BAD) >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | > + PKT_RX_L4_CKSUM_BAD) >> 1, > + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, > + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, > + PKT_RX_IP_CKSUM_BAD >> 1, > + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); > + > + const __m256i cksum_mask = > + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | > + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | > + PKT_RX_EIP_CKSUM_BAD); > + > + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ > + > + uint16_t i, received; > + > + for (i = 0, received = 0; i < nb_pkts; > + i += IAVF_DESCS_PER_LOOP_AVX, > + rxdp += IAVF_DESCS_PER_LOOP_AVX) { > + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ > + _mm256_storeu_si256((void *)&rx_pkts[i], > + _mm256_loadu_si256((void *)&sw_ring[i])); > +#ifdef RTE_ARCH_X86_64 > + _mm256_storeu_si256 > + ((void *)&rx_pkts[i + 4], > + _mm256_loadu_si256((void *)&sw_ring[i + 4])); > +#endif > + > + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; > +#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC > + /* for AVX we need alignment otherwise loads are not atomic */ > + if (avx_aligned) { > + /* load in descriptors, 2 at a time, in reverse order */ > + raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6)); > + rte_compiler_barrier(); > + raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4)); > + rte_compiler_barrier(); > + raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2)); > + rte_compiler_barrier(); > + raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0)); > + } else > +#endif > + { > + const __m128i raw_desc7 = > + _mm_load_si128((void *)(rxdp + 7)); > + rte_compiler_barrier(); > + const __m128i raw_desc6 = > + _mm_load_si128((void *)(rxdp + 6)); > + rte_compiler_barrier(); > + const __m128i raw_desc5 = > + _mm_load_si128((void *)(rxdp + 5)); > + rte_compiler_barrier(); > + const __m128i raw_desc4 = > + _mm_load_si128((void *)(rxdp + 4)); > + rte_compiler_barrier(); > + const __m128i raw_desc3 = > + _mm_load_si128((void *)(rxdp + 3)); > + rte_compiler_barrier(); > + const __m128i raw_desc2 = > + _mm_load_si128((void *)(rxdp + 2)); > + rte_compiler_barrier(); > + const __m128i raw_desc1 = > + _mm_load_si128((void *)(rxdp + 1)); > + rte_compiler_barrier(); > + const __m128i raw_desc0 = > + _mm_load_si128((void *)(rxdp + 0)); > + > + raw_desc6_7 = > + _mm256_inserti128_si256 > + (_mm256_castsi128_si256(raw_desc6), > + raw_desc7, 1); > + raw_desc4_5 = > + _mm256_inserti128_si256 > + (_mm256_castsi128_si256(raw_desc4), > + raw_desc5, 1); > + raw_desc2_3 = > + _mm256_inserti128_si256 > + (_mm256_castsi128_si256(raw_desc2), > + raw_desc3, 1); > + raw_desc0_1 = > + _mm256_inserti128_si256 > + (_mm256_castsi128_si256(raw_desc0), > + raw_desc1, 1); > + } > + > + if (split_packet) { > + int j; > + > + for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++) > + rte_mbuf_prefetch_part2(rx_pkts[i + j]); > + } > + > + /** > + * convert descriptors 4-7 into mbufs, adjusting length and > + * re-arranging fields. Then write into the mbuf > + */ > + const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, > + PKTLEN_SHIFT); > + const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, > + PKTLEN_SHIFT); > + const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, > + len6_7, 0x80); > + const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, > + len4_5, 0x80); > + __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk); > + __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk); > + > + mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); > + mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); > + /** > + * to get packet types, shift 64-bit values down 30 bits > + * and so ptype is in lower 8-bits in each > + */ > + const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30); > + const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30); > + const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24); > + const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8); > + const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24); > + const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8); > + > + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4); > + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0); > + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4); > + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0); > + /* merge the status bits into one register */ > + const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7, > + desc4_5); > + > + /** > + * convert descriptors 0-3 into mbufs, adjusting length and > + * re-arranging fields. Then write into the mbuf > + */ > + const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, > + PKTLEN_SHIFT); > + const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, > + PKTLEN_SHIFT); > + const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, > + len2_3, 0x80); > + const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, > + len0_1, 0x80); > + __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk); > + __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk); > + > + mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); > + mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); > + /* get the packet types */ > + const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30); > + const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30); > + const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24); > + const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8); > + const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24); > + const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8); > + > + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4); > + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0); > + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4); > + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0); > + /* merge the status bits into one register */ > + const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3, > + desc0_1); > + > + /** > + * take the two sets of status bits and merge to one > + * After merge, the packets status flags are in the > + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] > + */ > + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, > + status0_3); > + > + /* now do flag manipulation */ > + > + /* get only flag/error bits we want */ > + const __m256i flag_bits = > + _mm256_and_si256(status0_7, flags_mask); > + /* set vlan and rss flags */ > + const __m256i vlan_flags = > + _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); > + const __m256i rss_flags = > + _mm256_shuffle_epi8(rss_flags_shuf, > + _mm256_srli_epi32(flag_bits, 11)); > + /** > + * l3_l4_error flags, shuffle, then shift to correct adjustment > + * of flags in flags_shuf, and finally mask out extra bits > + */ > + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, > + _mm256_srli_epi32(flag_bits, 22)); > + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); > + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); > + > + /* merge flags */ > + const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, > + _mm256_or_si256(rss_flags, vlan_flags)); > + /** > + * At this point, we have the 8 sets of flags in the low 16-bits > + * of each 32-bit value in vlan0. > + * We want to extract these, and merge them with the mbuf init > + * data so we can do a single write to the mbuf to set the flags > + * and all the other initialization fields. Extracting the > + * appropriate flags means that we have to do a shift and blend > + * for each mbuf before we do the write. However, we can also > + * add in the previously computed rx_descriptor fields to > + * make a single 256-bit write per mbuf > + */ > + /* check the structure matches expectations */ > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != > + offsetof(struct rte_mbuf, rearm_data) + 8); > + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != > + RTE_ALIGN(offsetof(struct rte_mbuf, > + rearm_data), > + 16)); > + /* build up data and do writes */ > + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, > + rearm6, rearm7; > + rearm6 = _mm256_blend_epi32(mbuf_init, > + _mm256_slli_si256(mbuf_flags, 8), > + 0x04); > + rearm4 = _mm256_blend_epi32(mbuf_init, > + _mm256_slli_si256(mbuf_flags, 4), > + 0x04); > + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); > + rearm0 = _mm256_blend_epi32(mbuf_init, > + _mm256_srli_si256(mbuf_flags, 4), > + 0x04); > + /* permute to add in the rx_descriptor e.g. rss fields */ > + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); > + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); > + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); > + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); > + /* write to mbuf */ > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, > + rearm6); > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, > + rearm4); > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, > + rearm2); > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, > + rearm0); > + > + /* repeat for the odd mbufs */ > + const __m256i odd_flags = > + _mm256_castsi128_si256 > + (_mm256_extracti128_si256(mbuf_flags, 1)); > + rearm7 = _mm256_blend_epi32(mbuf_init, > + _mm256_slli_si256(odd_flags, 8), > + 0x04); > + rearm5 = _mm256_blend_epi32(mbuf_init, > + _mm256_slli_si256(odd_flags, 4), > + 0x04); > + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); > + rearm1 = _mm256_blend_epi32(mbuf_init, > + _mm256_srli_si256(odd_flags, 4), > + 0x04); > + /* since odd mbufs are already in hi 128-bits use blend */ > + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); > + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); > + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); > + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); > + /* again write to mbufs */ > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, > + rearm7); > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, > + rearm5); > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, > + rearm3); > + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, > + rearm1); > + > + /* extract and record EOP bit */ > + if (split_packet) { > + const __m128i eop_mask = > + _mm_set1_epi16(1 << > IAVF_RX_DESC_STATUS_EOF_SHIFT); > + const __m256i eop_bits256 = _mm256_and_si256(status0_7, > + eop_check); > + /* pack status bits into a single 128-bit register */ > + const __m128i eop_bits = > + _mm_packus_epi32 > + (_mm256_castsi256_si128(eop_bits256), > + _mm256_extractf128_si256(eop_bits256, > + 1)); > + /** > + * flip bits, and mask out the EOP bit, which is now > + * a split-packet bit i.e. !EOP, rather than EOP one. > + */ > + __m128i split_bits = _mm_andnot_si128(eop_bits, > + eop_mask); > + /** > + * eop bits are out of order, so we need to shuffle them > + * back into order again. In doing so, only use low 8 > + * bits, which acts like another pack instruction > + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 > + * [Since we use epi8, the 16-bit positions are > + * multiplied by 2 in the eop_shuffle value.] > + */ > + __m128i eop_shuffle = > + _mm_set_epi8(/* zero hi 64b */ > + 0xFF, 0xFF, 0xFF, 0xFF, > + 0xFF, 0xFF, 0xFF, 0xFF, > + /* move values to lo 64b */ > + 8, 0, 10, 2, > + 12, 4, 14, 6); > + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); > + *(uint64_t *)split_packet = > + _mm_cvtsi128_si64(split_bits); > + split_packet += IAVF_DESCS_PER_LOOP_AVX; > + } > + > + /* perform dd_check */ > + status0_7 = _mm256_and_si256(status0_7, dd_check); > + status0_7 = _mm256_packs_epi32(status0_7, > + _mm256_setzero_si256()); > + > + uint64_t burst = __builtin_popcountll > + (_mm_cvtsi128_si64 > + (_mm256_extracti128_si256 > + (status0_7, 1))); > + burst += __builtin_popcountll > + (_mm_cvtsi128_si64 > + (_mm256_castsi256_si128(status0_7))); > + received += burst; > + if (burst != IAVF_DESCS_PER_LOOP_AVX) > + break; > + } > + > + /* update tail pointers */ > + rxq->rx_tail += received; > + rxq->rx_tail &= (rxq->nb_rx_desc - 1); > + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ > + rxq->rx_tail--; > + received--; > + } > + rxq->rxrearm_nb += received; > + return received; > +} > + > +/** > + * Notice: > + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet > + */ > +uint16_t > +iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, > + uint16_t nb_pkts) > +{ > + return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); > +} > + > +/** > + * vPMD receive routine that reassembles single burst of 32 scattered packets > + * Notice: > + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet > + */ > +static uint16_t > +iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, > + uint16_t nb_pkts) > +{ > + struct iavf_rx_queue *rxq = rx_queue; > + uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; > + > + /* get some new buffers */ > + uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts, > + split_flags); > + if (nb_bufs == 0) > + return 0; > + > + /* happy day case, full burst + no packets to be joined */ > + const uint64_t *split_fl64 = (uint64_t *)split_flags; > + > + if (!rxq->pkt_first_seg && > + split_fl64[0] == 0 && split_fl64[1] == 0 && > + split_fl64[2] == 0 && split_fl64[3] == 0) > + return nb_bufs; > + > + /* reassemble any packets that need reassembly*/ > + unsigned int i = 0; > + > + if (!rxq->pkt_first_seg) { > + /* find the first split flag, and only reassemble then*/ > + while (i < nb_bufs && !split_flags[i]) > + i++; > + if (i == nb_bufs) > + return nb_bufs; > + rxq->pkt_first_seg = rx_pkts[i]; > + } > + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, > + &split_flags[i]); > +} > + > +/** > + * vPMD receive routine that reassembles scattered packets. > + * Main receive routine that can handle arbitrary burst sizes > + * Notice: > + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet > + */ > +uint16_t > +iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, > + uint16_t nb_pkts) > +{ > + uint16_t retval = 0; > + > + while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { > + uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue, > + rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); > + retval += burst; > + nb_pkts -= burst; > + if (burst < IAVF_VPMD_RX_MAX_BURST) > + return retval; > + } > + return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue, > + rx_pkts + retval, nb_pkts); > +} > + > +static inline void > +iavf_vtx1(volatile struct iavf_tx_desc *txdp, > + struct rte_mbuf *pkt, uint64_t flags) > +{ > + uint64_t high_qw = > + (IAVF_TX_DESC_DTYPE_DATA | > + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) | > + ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT)); > + > + __m128i descriptor = _mm_set_epi64x(high_qw, > + pkt->buf_physaddr + pkt->data_off); > + _mm_store_si128((__m128i *)txdp, descriptor); > +} > + > +static inline void > +iavf_vtx(volatile struct iavf_tx_desc *txdp, > + struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) > +{ > + const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA | > + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT)); > + > + /* if unaligned on 32-bit boundary, do one to align */ > + if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { > + iavf_vtx1(txdp, *pkt, flags); > + nb_pkts--, txdp++, pkt++; > + } > + > + /* do two at a time while possible, in bursts */ > + for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { > + uint64_t hi_qw3 = > + hi_qw_tmpl | > + ((uint64_t)pkt[3]->data_len << > + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); > + uint64_t hi_qw2 = > + hi_qw_tmpl | > + ((uint64_t)pkt[2]->data_len << > + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); > + uint64_t hi_qw1 = > + hi_qw_tmpl | > + ((uint64_t)pkt[1]->data_len << > + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); > + uint64_t hi_qw0 = > + hi_qw_tmpl | > + ((uint64_t)pkt[0]->data_len << > + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); > + > + __m256i desc2_3 = > + _mm256_set_epi64x > + (hi_qw3, > + pkt[3]->buf_physaddr + pkt[3]->data_off, > + hi_qw2, > + pkt[2]->buf_physaddr + pkt[2]->data_off); > + __m256i desc0_1 = > + _mm256_set_epi64x > + (hi_qw1, > + pkt[1]->buf_physaddr + pkt[1]->data_off, > + hi_qw0, > + pkt[0]->buf_physaddr + pkt[0]->data_off); > + _mm256_store_si256((void *)(txdp + 2), desc2_3); > + _mm256_store_si256((void *)txdp, desc0_1); > + } > + > + /* do any last ones */ > + while (nb_pkts) { > + iavf_vtx1(txdp, *pkt, flags); > + txdp++, pkt++, nb_pkts--; > + } > +} > + > +static inline uint16_t > +iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, > + uint16_t nb_pkts) > +{ > + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; > + volatile struct iavf_tx_desc *txdp; > + struct iavf_tx_entry *txep; > + uint16_t n, nb_commit, tx_id; > + uint64_t flags = IAVF_TX_DESC_CMD_EOP; > + uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP; > + > + /* cross rx_thresh boundary is not allowed */ > + nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); > + > + if (txq->nb_free < txq->free_thresh) > + iavf_tx_free_bufs(txq); > + > + nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); > + if (unlikely(nb_pkts == 0)) > + return 0; > + > + tx_id = txq->tx_tail; > + txdp = &txq->tx_ring[tx_id]; > + txep = &txq->sw_ring[tx_id]; > + > + txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); > + > + n = (uint16_t)(txq->nb_tx_desc - tx_id); > + if (nb_commit >= n) { > + tx_backlog_entry(txep, tx_pkts, n); > + > + iavf_vtx(txdp, tx_pkts, n - 1, flags); > + tx_pkts += (n - 1); > + txdp += (n - 1); > + > + iavf_vtx1(txdp, *tx_pkts++, rs); > + > + nb_commit = (uint16_t)(nb_commit - n); > + > + tx_id = 0; > + txq->next_rs = (uint16_t)(txq->rs_thresh - 1); > + > + /* avoid reach the end of ring */ > + txdp = &txq->tx_ring[tx_id]; > + txep = &txq->sw_ring[tx_id]; > + } > + > + tx_backlog_entry(txep, tx_pkts, nb_commit); > + > + iavf_vtx(txdp, tx_pkts, nb_commit, flags); > + > + tx_id = (uint16_t)(tx_id + nb_commit); > + if (tx_id > txq->next_rs) { > + txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |= > + rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) << > + IAVF_TXD_QW1_CMD_SHIFT); > + txq->next_rs = > + (uint16_t)(txq->next_rs + txq->rs_thresh); > + } > + > + txq->tx_tail = tx_id; > + > + IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); > + > + return nb_pkts; > +} > + > +uint16_t > +iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, > + uint16_t nb_pkts) > +{ > + uint16_t nb_tx = 0; > + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; > + > + while (nb_pkts) { > + uint16_t ret, num; > + > + num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); > + ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx], > + num); > + nb_tx += ret; > + nb_pkts -= ret; > + if (ret < num) > + break; > + } > + > + return nb_tx; > +} > diff --git a/drivers/net/iavf/iavf_rxtx_vec_common.h > b/drivers/net/iavf/iavf_rxtx_vec_common.h > index db509d71f..fff0555d2 100644 > --- a/drivers/net/iavf/iavf_rxtx_vec_common.h > +++ b/drivers/net/iavf/iavf_rxtx_vec_common.h > @@ -207,4 +207,76 @@ iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq) > rxq->mbuf_initializer = *(uint64_t *)p; > return 0; > } > + > +static inline int > +iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq) > +{ > + if (!rxq) > + return -1; > + > + if (!rte_is_power_of_2(rxq->nb_rx_desc)) > + return -1; > + > + if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST) > + return -1; > + > + if (rxq->nb_rx_desc % rxq->rx_free_thresh) > + return -1; > + > + return 0; > +} > + > +#define IAVF_NO_VECTOR_FLAGS ( \ > + DEV_TX_OFFLOAD_MULTI_SEGS | \ > + DEV_TX_OFFLOAD_VLAN_INSERT | \ > + DEV_TX_OFFLOAD_SCTP_CKSUM | \ > + DEV_TX_OFFLOAD_UDP_CKSUM | \ > + DEV_TX_OFFLOAD_TCP_CKSUM) > + > +static inline int > +iavf_tx_vec_queue_default(struct iavf_tx_queue *txq) > +{ > + if (!txq) > + return -1; > + > + if (txq->offloads & IAVF_NO_VECTOR_FLAGS) > + return -1; > + > + if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST || > + txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF) > + return -1; > + > + return 0; > +} > + > +static inline int > +iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev) > +{ > + int i; > + struct iavf_rx_queue *rxq; > + > + for (i = 0; i < dev->data->nb_rx_queues; i++) { > + rxq = dev->data->rx_queues[i]; > + if (iavf_rx_vec_queue_default(rxq)) > + return -1; > + } > + > + return 0; > +} > + > +static inline int > +iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev) > +{ > + int i; > + struct iavf_tx_queue *txq; > + > + for (i = 0; i < dev->data->nb_tx_queues; i++) { > + txq = dev->data->tx_queues[i]; > + if (iavf_tx_vec_queue_default(txq)) > + return -1; > + } > + > + return 0; > +} > + > #endif > diff --git a/drivers/net/iavf/iavf_rxtx_vec_sse.c > b/drivers/net/iavf/iavf_rxtx_vec_sse.c > index cc71f23a5..15c52a4c2 100644 > --- a/drivers/net/iavf/iavf_rxtx_vec_sse.c > +++ b/drivers/net/iavf/iavf_rxtx_vec_sse.c > @@ -655,3 +655,15 @@ iavf_rxq_vec_setup(struct iavf_rx_queue *rxq) > rxq->ops = &sse_vec_rxq_ops; > return iavf_rxq_vec_setup_default(rxq); > } > + > +int __attribute__((cold)) > +iavf_rx_vec_dev_check(struct rte_eth_dev *dev) > +{ > + return iavf_rx_vec_dev_check_default(dev); > +} > + > +int __attribute__((cold)) > +iavf_tx_vec_dev_check(struct rte_eth_dev *dev) > +{ > + return iavf_tx_vec_dev_check_default(dev); > +} > diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build > index e5a2f5553..c2401af86 100644 > --- a/drivers/net/iavf/meson.build > +++ b/drivers/net/iavf/meson.build > @@ -17,4 +17,21 @@ sources = files( > if arch_subdir == 'x86' > dpdk_conf.set('RTE_LIBRTE_IAVF_INC_VECTOR', 1) > sources += files('iavf_rxtx_vec_sse.c') > + > + # compile AVX2 version if either: > + # a. we have AVX supported in minimum instruction set baseline > + # b. it's not minimum instruction set, but supported by compiler > + if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2') > + cflags += ['-DCC_AVX2_SUPPORT'] > + sources += files('iavf_rxtx_vec_avx2.c') > + elif cc.has_argument('-mavx2') > + cflags += ['-DCC_AVX2_SUPPORT'] > + iavf_avx2_lib = static_library('iavf_avx2_lib', > + 'iavf_rxtx_vec_avx2.c', > + dependencies: [static_rte_ethdev, > + static_rte_kvargs, static_rte_hash], > + include_directories: includes, > + c_args: [cflags, '-mavx2']) > + objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c') > + endif > endif