Make ACL library to build/work on 'default' architecture:
- make rte_acl_classify_scalar really scalar
 (make sure it wouldn't use sse4 instrincts through resolve_priority()).
- Provide two versions of rte_acl_classify code path:
  rte_acl_classify_sse() - could be build and used only on systems with sse4.2
  and upper, return -ENOTSUP on lower arch.
  rte_acl_classify_scalar() - a slower version, but could be build and used
  on all systems.
- rte_acl_classify() - becomes just a macro pointing to one of the functions
  mentioned abovei (highest avaialbe version at build time).
- keep code common for both version code.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev at intel.com>
---
 lib/librte_acl/acl_bld.c           |   5 +-
 lib/librte_acl/acl_match_check.def |  92 +++++
 lib/librte_acl/acl_run.c           | 692 ++++---------------------------------
 lib/librte_acl/acl_run_sse.h       | 629 +++++++++++++++++++++++++++++++++
 lib/librte_acl/rte_acl.h           |  12 +-
 5 files changed, 806 insertions(+), 624 deletions(-)
 create mode 100644 lib/librte_acl/acl_match_check.def
 create mode 100644 lib/librte_acl/acl_run_sse.h

diff --git a/lib/librte_acl/acl_bld.c b/lib/librte_acl/acl_bld.c
index 873447b..09d58ea 100644
--- a/lib/librte_acl/acl_bld.c
+++ b/lib/librte_acl/acl_bld.c
@@ -31,7 +31,6 @@
  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */

-#include <nmmintrin.h>
 #include <rte_acl.h>
 #include "tb_mem.h"
 #include "acl.h"
@@ -1480,8 +1479,8 @@ acl_calc_wildness(struct rte_acl_build_rule *head,

                        switch (rule->config->defs[n].type) {
                        case RTE_ACL_FIELD_TYPE_BITMASK:
-                               wild = (size -
-                                       _mm_popcnt_u32(fld->mask_range.u8)) /
+                               wild = (size - __builtin_popcount(
+                                       fld->mask_range.u8)) /
                                        size;
                                break;

diff --git a/lib/librte_acl/acl_match_check.def 
b/lib/librte_acl/acl_match_check.def
new file mode 100644
index 0000000..8ff4ec3
--- /dev/null
+++ b/lib/librte_acl/acl_match_check.def
@@ -0,0 +1,92 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Creates a definition for '__func_match_check__' function.
+ * '__func_resolve_priority__' should point to already  resolved function.
+ */
+
+#ifndef __func_match_check__
+#error __func_match_check__ undefined
+#endif
+
+#ifndef __func_resolve_priority__
+#error __func_resolve_priority__ undefined
+#endif
+
+
+/*
+ * Detect matches. If a match node transition is found, then this trie
+ * traversal is complete and fill the slot with the next trie
+ * to be processed.
+ */
+static inline uint64_t
+__func_match_check__(uint64_t transition, int slot,
+       const struct rte_acl_ctx *ctx, struct parms *parms,
+       struct acl_flow_data *flows)
+{
+       const struct rte_acl_match_results *p;
+
+       p = (const struct rte_acl_match_results *)
+               (flows->trans + ctx->match_index);
+
+       if (transition & RTE_ACL_NODE_MATCH) {
+
+               /* Remove flags from index and decrement active traversals */
+               transition &= RTE_ACL_NODE_INDEX;
+               flows->started--;
+
+               /* Resolve priorities for this trie and running results */
+               if (flows->categories == 1)
+                       resolve_single_priority(transition, slot, ctx,
+                               parms, p);
+               else
+                       __func_resolve_priority__(transition, slot, ctx, parms,
+                               p, flows->categories);
+
+               /* Count down completed tries for this search request */
+               parms[slot].cmplt->count--;
+
+               /* Fill the slot with the next trie or idle trie */
+               transition = acl_start_next_trie(flows, parms, slot, ctx);
+
+       } else if (transition == ctx->idle) {
+               /* reset indirection table for idle slots */
+               parms[slot].data_index = idle;
+       }
+
+       return transition;
+}
+
+#undef __func_match_check__
+#undef __func_resolve_priority__
diff --git a/lib/librte_acl/acl_run.c b/lib/librte_acl/acl_run.c
index e3d9fc1..f9646b8 100644
--- a/lib/librte_acl/acl_run.c
+++ b/lib/librte_acl/acl_run.c
@@ -50,13 +50,6 @@
 #define        SCALAR_QRANGE_MASK      0x7f7f7f7f
 #define        SCALAR_QRANGE_MIN       0x80808080

-enum {
-       SHUFFLE32_SLOT1 = 0xe5,
-       SHUFFLE32_SLOT2 = 0xe6,
-       SHUFFLE32_SLOT3 = 0xe7,
-       SHUFFLE32_SWAP64 = 0x4e,
-};
-
 /*
  * Structure to manage N parallel trie traversals.
  * The runtime trie traversal routines can process 8, 4, or 2 tries
@@ -111,80 +104,6 @@ struct parms {
  */
 static const uint32_t idle[UINT8_MAX + 1];

-static const rte_xmm_t mm_type_quad_range = {
-       .u32 = {
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-       },
-};
-
-static const rte_xmm_t mm_type_quad_range64 = {
-       .u32 = {
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-               0,
-               0,
-       },
-};
-
-static const rte_xmm_t mm_shuffle_input = {
-       .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
-};
-
-static const rte_xmm_t mm_shuffle_input64 = {
-       .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
-};
-
-static const rte_xmm_t mm_ones_16 = {
-       .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
-};
-
-static const rte_xmm_t mm_bytes = {
-       .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
-};
-
-static const rte_xmm_t mm_bytes64 = {
-       .u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
-};
-
-static const rte_xmm_t mm_match_mask = {
-       .u32 = {
-               RTE_ACL_NODE_MATCH,
-               RTE_ACL_NODE_MATCH,
-               RTE_ACL_NODE_MATCH,
-               RTE_ACL_NODE_MATCH,
-       },
-};
-
-static const rte_xmm_t mm_match_mask64 = {
-       .u32 = {
-               RTE_ACL_NODE_MATCH,
-               0,
-               RTE_ACL_NODE_MATCH,
-               0,
-       },
-};
-
-static const rte_xmm_t mm_index_mask = {
-       .u32 = {
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-       },
-};
-
-static const rte_xmm_t mm_index_mask64 = {
-       .u32 = {
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-               0,
-               0,
-       },
-};
-
 /*
  * Allocate a completion structure to manage the tries for a packet.
  */
@@ -224,55 +143,67 @@ resolve_single_priority(uint64_t transition, int n,
                parms[n].cmplt->priority[0] = p[transition].priority[0];
                parms[n].cmplt->results[0] = p[transition].results[0];
        }
-
-       parms[n].cmplt->count--;
 }

 /*
- * Resolve priority for multiple results. This consists comparing
- * the priority of the current traversal with the running set of
- * results for the packet. For each result, keep a running array of
- * the result (rule number) and its priority for each category.
+ * Resolve priority for multiple results (scalar version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
  */
 static inline void
-resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
-       struct parms *parms, const struct rte_acl_match_results *p,
-       uint32_t categories)
+resolve_priority_scalar(uint64_t transition, int n,
+       const struct rte_acl_ctx *ctx, struct parms *parms,
+       const struct rte_acl_match_results *p, uint32_t categories)
 {
-       uint32_t x;
-       xmm_t results, priority, results1, priority1, selector;
-       xmm_t *saved_results, *saved_priority;
-
-       for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
-
-               saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
-               saved_priority =
-                       (xmm_t *)(&parms[n].cmplt->priority[x]);
-
-               /* get results and priorities for completed trie */
-               results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
-               priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
-
-               /* if this is not the first completed trie */
-               if (parms[n].cmplt->count != ctx->num_tries) {
-
-                       /* get running best results and their priorities */
-                       results1 = MM_LOADU(saved_results);
-                       priority1 = MM_LOADU(saved_priority);
-
-                       /* select results that are highest priority */
-                       selector = MM_CMPGT32(priority1, priority);
-                       results = MM_BLENDV8(results, results1, selector);
-                       priority = MM_BLENDV8(priority, priority1, selector);
+       uint32_t i;
+       int32_t *saved_priority;
+       uint32_t *saved_results;
+       const int32_t *priority;
+       const uint32_t *results;
+
+       saved_results = parms[n].cmplt->results;
+       saved_priority = parms[n].cmplt->priority;
+
+       /* results and priorities for completed trie */
+       results = p[transition].results;
+       priority = p[transition].priority;
+
+       /* if this is not the first completed trie */
+       if (parms[n].cmplt->count != ctx->num_tries) {
+               for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+
+                       if (saved_priority[i] <= priority[i]) {
+                               saved_priority[i] = priority[i];
+                               saved_results[i] = results[i];
+                       }
+                       if (saved_priority[i + 1] <= priority[i + 1]) {
+                               saved_priority[i + 1] = priority[i + 1];
+                               saved_results[i + 1] = results[i + 1];
+                       }
+                       if (saved_priority[i + 2] <= priority[i + 2]) {
+                               saved_priority[i + 2] = priority[i + 2];
+                               saved_results[i + 2] = results[i + 2];
+                       }
+                       if (saved_priority[i + 3] <= priority[i + 3]) {
+                               saved_priority[i + 3] = priority[i + 3];
+                               saved_results[i + 3] = results[i + 3];
+                       }
+               }
+       } else {
+               for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+                       saved_priority[i] = priority[i];
+                       saved_priority[i + 1] = priority[i + 1];
+                       saved_priority[i + 2] = priority[i + 2];
+                       saved_priority[i + 3] = priority[i + 3];
+
+                       saved_results[i] = results[i];
+                       saved_results[i + 1] = results[i + 1];
+                       saved_results[i + 2] = results[i + 2];
+                       saved_results[i + 3] = results[i + 3];
                }
-
-               /* save running best results and their priorities */
-               MM_STOREU(saved_results, results);
-               MM_STOREU(saved_priority, priority);
        }
-
-       /* Count down completed tries for this search request */
-       parms[n].cmplt->count--;
 }

 /*
@@ -326,230 +257,9 @@ acl_start_next_trie(struct acl_flow_data *flows, struct 
parms *parms, int n,
        return transition;
 }

-/*
- * Detect matches. If a match node transition is found, then this trie
- * traversal is complete and fill the slot with the next trie
- * to be processed.
- */
-static inline uint64_t
-acl_match_check_transition(uint64_t transition, int slot,
-       const struct rte_acl_ctx *ctx, struct parms *parms,
-       struct acl_flow_data *flows)
-{
-       const struct rte_acl_match_results *p;
-
-       p = (const struct rte_acl_match_results *)
-               (flows->trans + ctx->match_index);
-
-       if (transition & RTE_ACL_NODE_MATCH) {
-
-               /* Remove flags from index and decrement active traversals */
-               transition &= RTE_ACL_NODE_INDEX;
-               flows->started--;
-
-               /* Resolve priorities for this trie and running results */
-               if (flows->categories == 1)
-                       resolve_single_priority(transition, slot, ctx,
-                               parms, p);
-               else
-                       resolve_priority(transition, slot, ctx, parms, p,
-                               flows->categories);
-
-               /* Fill the slot with the next trie or idle trie */
-               transition = acl_start_next_trie(flows, parms, slot, ctx);
-
-       } else if (transition == ctx->idle) {
-               /* reset indirection table for idle slots */
-               parms[slot].data_index = idle;
-       }
-
-       return transition;
-}
-
-/*
- * Extract transitions from an XMM register and check for any matches
- */
-static void
-acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
-       struct parms *parms, struct acl_flow_data *flows)
-{
-       uint64_t transition1, transition2;
-
-       /* extract transition from low 64 bits. */
-       transition1 = MM_CVT64(*indicies);
-
-       /* extract transition from high 64 bits. */
-       *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
-       transition2 = MM_CVT64(*indicies);
-
-       transition1 = acl_match_check_transition(transition1, slot, ctx,
-               parms, flows);
-       transition2 = acl_match_check_transition(transition2, slot + 1, ctx,
-               parms, flows);
-
-       /* update indicies with new transitions. */
-       *indicies = MM_SET64(transition2, transition1);
-}
-
-/*
- * Check for a match in 2 transitions (contained in SSE register)
- */
-static inline void
-acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms 
*parms,
-       struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
-{
-       xmm_t temp;
-
-       temp = MM_AND(match_mask, *indicies);
-       while (!MM_TESTZ(temp, temp)) {
-               acl_process_matches(indicies, slot, ctx, parms, flows);
-               temp = MM_AND(match_mask, *indicies);
-       }
-}
-
-/*
- * Check for any match in 4 transitions (contained in 2 SSE registers)
- */
-static inline void
-acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms 
*parms,
-       struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
-       xmm_t match_mask)
-{
-       xmm_t temp;
-
-       /* put low 32 bits of each transition into one register */
-       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
-               0x88);
-       /* test for match node */
-       temp = MM_AND(match_mask, temp);
-
-       while (!MM_TESTZ(temp, temp)) {
-               acl_process_matches(indicies1, slot, ctx, parms, flows);
-               acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
-
-               temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
-                                       (__m128)*indicies2,
-                                       0x88);
-               temp = MM_AND(match_mask, temp);
-       }
-}
-
-/*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline xmm_t
-acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-       xmm_t *indicies1, xmm_t *indicies2)
-{
-       xmm_t addr, node_types, temp;
-
-       /*
-        * Note that no transition is done for a match
-        * node and therefore a stream freezes when
-        * it reaches a match.
-        */
-
-       /* Shuffle low 32 into temp and high 32 into indicies2 */
-       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
-               0x88);
-       *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
-               (__m128)*indicies2, 0xdd);
-
-       /* Calc node type and node addr */
-       node_types = MM_ANDNOT(index_mask, temp);
-       addr = MM_AND(index_mask, temp);
-
-       /*
-        * Calc addr for DFAs - addr = dfa_index + input_byte
-        */
-
-       /* mask for DFA type (0) nodes */
-       temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
-
-       /* add input byte to DFA position */
-       temp = MM_AND(temp, bytes);
-       temp = MM_AND(temp, next_input);
-       addr = MM_ADD32(addr, temp);
-
-       /*
-        * Calc addr for Range nodes -> range_index + range(input)
-        */
-       node_types = MM_CMPEQ32(node_types, type_quad_range);
-
-       /*
-        * Calculate number of range boundaries that are less than the
-        * input value. Range boundaries for each node are in signed 8 bit,
-        * ordered from -128 to 127 in the indicies2 register.
-        * This is effectively a popcnt of bytes that are greater than the
-        * input byte.
-        */
-
-       /* shuffle input byte to all 4 positions of 32 bit value */
-       temp = MM_SHUFFLE8(next_input, shuffle_input);
-
-       /* check ranges */
-       temp = MM_CMPGT8(temp, *indicies2);
-
-       /* convert -1 to 1 (bytes greater than input byte */
-       temp = MM_SIGN8(temp, temp);
-
-       /* horizontal add pairs of bytes into words */
-       temp = MM_MADD8(temp, temp);
-
-       /* horizontal add pairs of words into dwords */
-       temp = MM_MADD16(temp, ones_16);
-
-       /* mask to range type nodes */
-       temp = MM_AND(temp, node_types);
-
-       /* add index into node position */
-       return MM_ADD32(addr, temp);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
- */
-static inline xmm_t
-transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-       const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
-{
-       xmm_t addr;
-       uint64_t trans0, trans2;
-
-        /* Calculate the address (array index) for all 4 transitions. */
-
-       addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
-               bytes, type_quad_range, indicies1, indicies2);
-
-        /* Gather 64 bit transitions and pack back into 2 registers. */
-
-       trans0 = trans[MM_CVT32(addr)];
-
-       /* get slot 2 */
-
-       /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
-       trans2 = trans[MM_CVT32(addr)];
-
-       /* get slot 1 */
-
-       /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-       *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
-
-       /* get slot 3 */
-
-       /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
-       *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
-
-       return MM_SRL32(next_input, 8);
-}
+#define        __func_resolve_priority__       resolve_priority_scalar
+#define        __func_match_check__            acl_match_check_scalar
+#include "acl_match_check.def"

 static inline void
 acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
@@ -570,264 +280,6 @@ acl_set_flow(struct acl_flow_data *flows, struct 
completion *cmplt,
 }

 /*
- * Execute trie traversal with 8 traversals in parallel
- */
-static inline void
-search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
-       uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
-       int n;
-       struct acl_flow_data flows;
-       uint64_t index_array[MAX_SEARCHES_SSE8];
-       struct completion cmplt[MAX_SEARCHES_SSE8];
-       struct parms parms[MAX_SEARCHES_SSE8];
-       xmm_t input0, input1;
-       xmm_t indicies1, indicies2, indicies3, indicies4;
-
-       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-               total_packets, categories, ctx->trans_table);
-
-       for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
-               cmplt[n].count = 0;
-               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-       }
-
-       /*
-        * indicies1 contains index_array[0,1]
-        * indicies2 contains index_array[2,3]
-        * indicies3 contains index_array[4,5]
-        * indicies4 contains index_array[6,7]
-        */
-
-       indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
-       indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
-       indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
-
-        /* Check for any matches. */
-       acl_match_check_x4(0, ctx, parms, &flows,
-               &indicies1, &indicies2, mm_match_mask.m);
-       acl_match_check_x4(4, ctx, parms, &flows,
-               &indicies3, &indicies4, mm_match_mask.m);
-
-       while (flows.started > 0) {
-
-               /* Gather 4 bytes of input data for each stream. */
-               input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
-                       0);
-               input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
-                       0);
-
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
-
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
-
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
-
-                /* Process the 4 bytes of input on each stream. */
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-                /* Check for any matches. */
-               acl_match_check_x4(0, ctx, parms, &flows,
-                       &indicies1, &indicies2, mm_match_mask.m);
-               acl_match_check_x4(4, ctx, parms, &flows,
-                       &indicies3, &indicies4, mm_match_mask.m);
-       }
-}
-
-/*
- * Execute trie traversal with 4 traversals in parallel
- */
-static inline void
-search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
-        uint32_t *results, int total_packets, uint32_t categories)
-{
-       int n;
-       struct acl_flow_data flows;
-       uint64_t index_array[MAX_SEARCHES_SSE4];
-       struct completion cmplt[MAX_SEARCHES_SSE4];
-       struct parms parms[MAX_SEARCHES_SSE4];
-       xmm_t input, indicies1, indicies2;
-
-       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-               total_packets, categories, ctx->trans_table);
-
-       for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
-               cmplt[n].count = 0;
-               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-       }
-
-       indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
-       /* Check for any matches. */
-       acl_match_check_x4(0, ctx, parms, &flows,
-               &indicies1, &indicies2, mm_match_mask.m);
-
-       while (flows.started > 0) {
-
-               /* Gather 4 bytes of input data for each stream. */
-               input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
-
-               /* Process the 4 bytes of input on each stream. */
-               input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-                input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-                input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-                input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               /* Check for any matches. */
-               acl_match_check_x4(0, ctx, parms, &flows,
-                       &indicies1, &indicies2, mm_match_mask.m);
-       }
-}
-
-static inline xmm_t
-transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-       const uint64_t *trans, xmm_t *indicies1)
-{
-       uint64_t t;
-       xmm_t addr, indicies2;
-
-       indicies2 = MM_XOR(ones_16, ones_16);
-
-       addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
-               bytes, type_quad_range, indicies1, &indicies2);
-
-       /* Gather 64 bit transitions and pack 2 per register. */
-
-       t = trans[MM_CVT32(addr)];
-
-       /* get slot 1 */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-       *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
-
-       return MM_SRL32(next_input, 8);
-}
-
-/*
- * Execute trie traversal with 2 traversals in parallel.
- */
-static inline void
-search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
-       uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
-       int n;
-       struct acl_flow_data flows;
-       uint64_t index_array[MAX_SEARCHES_SSE2];
-       struct completion cmplt[MAX_SEARCHES_SSE2];
-       struct parms parms[MAX_SEARCHES_SSE2];
-       xmm_t input, indicies;
-
-       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-               total_packets, categories, ctx->trans_table);
-
-       for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
-               cmplt[n].count = 0;
-               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-       }
-
-       indicies = MM_LOADU((xmm_t *) &index_array[0]);
-
-       /* Check for any matches. */
-       acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
-
-       while (flows.started > 0) {
-
-               /* Gather 4 bytes of input data for each stream. */
-               input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-
-               /* Process the 4 bytes of input on each stream. */
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               /* Check for any matches. */
-               acl_match_check_x2(0, ctx, parms, &flows, &indicies,
-                       mm_match_mask64.m);
-       }
-}
-
-/*
  * When processing the transition, rather than using if/else
  * construct, the offset is calculated for DFA and QRANGE and
  * then conditionally added to the address based on node type.
@@ -915,9 +367,9 @@ rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, 
const uint8_t **data,

                }
                if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
-                       transition0 = acl_match_check_transition(transition0,
+                       transition0 = acl_match_check_scalar(transition0,
                                0, ctx, parms, &flows);
-                       transition1 = acl_match_check_transition(transition1,
+                       transition1 = acl_match_check_scalar(transition1,
                                1, ctx, parms, &flows);

                }
@@ -925,20 +377,20 @@ rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, 
const uint8_t **data,
        return 0;
 }

-int
-rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
-       uint32_t *results, uint32_t num, uint32_t categories)
-{
-       if (categories != 1 &&
-               ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
-               return -EINVAL;
+#ifdef __SSE4_1__

-       if (likely(num >= MAX_SEARCHES_SSE8))
-               search_sse_8(ctx, data, results, num, categories);
-       else if (num >= MAX_SEARCHES_SSE4)
-               search_sse_4(ctx, data, results, num, categories);
-       else
-               search_sse_2(ctx, data, results, num, categories);
+#include "acl_run_sse.h"

-       return 0;
+#else
+
+int
+rte_acl_classify_sse(__rte_unused const struct rte_acl_ctx *ctx,
+       __rte_unused const uint8_t **data,
+       __rte_unused uint32_t *results,
+       __rte_unused uint32_t num,
+       __rte_unused uint32_t categories)
+{
+       return -(ENOTSUP);
 }
+
+#endif /* __SSE4_1__ */
diff --git a/lib/librte_acl/acl_run_sse.h b/lib/librte_acl/acl_run_sse.h
new file mode 100644
index 0000000..3ce4c1e
--- /dev/null
+++ b/lib/librte_acl/acl_run_sse.h
@@ -0,0 +1,629 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef        _ACL_RUN_SSE_H_
+#define        _ACL_RUN_SSE_H_
+
+enum {
+       SHUFFLE32_SLOT1 = 0xe5,
+       SHUFFLE32_SLOT2 = 0xe6,
+       SHUFFLE32_SLOT3 = 0xe7,
+       SHUFFLE32_SWAP64 = 0x4e,
+};
+
+static const rte_xmm_t mm_type_quad_range = {
+       .u32 = {
+               RTE_ACL_NODE_QRANGE,
+               RTE_ACL_NODE_QRANGE,
+               RTE_ACL_NODE_QRANGE,
+               RTE_ACL_NODE_QRANGE,
+       },
+};
+
+static const rte_xmm_t mm_type_quad_range64 = {
+       .u32 = {
+               RTE_ACL_NODE_QRANGE,
+               RTE_ACL_NODE_QRANGE,
+               0,
+               0,
+       },
+};
+
+static const rte_xmm_t mm_shuffle_input = {
+       .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
+};
+
+static const rte_xmm_t mm_shuffle_input64 = {
+       .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
+};
+
+static const rte_xmm_t mm_ones_16 = {
+       .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
+};
+
+static const rte_xmm_t mm_bytes = {
+       .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
+};
+
+static const rte_xmm_t mm_bytes64 = {
+       .u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
+};
+
+static const rte_xmm_t mm_match_mask = {
+       .u32 = {
+               RTE_ACL_NODE_MATCH,
+               RTE_ACL_NODE_MATCH,
+               RTE_ACL_NODE_MATCH,
+               RTE_ACL_NODE_MATCH,
+       },
+};
+
+static const rte_xmm_t mm_match_mask64 = {
+       .u32 = {
+               RTE_ACL_NODE_MATCH,
+               0,
+               RTE_ACL_NODE_MATCH,
+               0,
+       },
+};
+
+static const rte_xmm_t mm_index_mask = {
+       .u32 = {
+               RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX,
+       },
+};
+
+static const rte_xmm_t mm_index_mask64 = {
+       .u32 = {
+               RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX,
+               0,
+               0,
+       },
+};
+
+
+/*
+ * Resolve priority for multiple results (sse version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
+       struct parms *parms, const struct rte_acl_match_results *p,
+       uint32_t categories)
+{
+       uint32_t x;
+       xmm_t results, priority, results1, priority1, selector;
+       xmm_t *saved_results, *saved_priority;
+
+       for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
+
+               saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
+               saved_priority =
+                       (xmm_t *)(&parms[n].cmplt->priority[x]);
+
+               /* get results and priorities for completed trie */
+               results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
+               priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
+
+               /* if this is not the first completed trie */
+               if (parms[n].cmplt->count != ctx->num_tries) {
+
+                       /* get running best results and their priorities */
+                       results1 = MM_LOADU(saved_results);
+                       priority1 = MM_LOADU(saved_priority);
+
+                       /* select results that are highest priority */
+                       selector = MM_CMPGT32(priority1, priority);
+                       results = MM_BLENDV8(results, results1, selector);
+                       priority = MM_BLENDV8(priority, priority1, selector);
+               }
+
+               /* save running best results and their priorities */
+               MM_STOREU(saved_results, results);
+               MM_STOREU(saved_priority, priority);
+       }
+}
+
+#define        __func_resolve_priority__       resolve_priority_sse
+#define        __func_match_check__            acl_match_check_sse
+#include "acl_match_check.def"
+
+/*
+ * Extract transitions from an XMM register and check for any matches
+ */
+static void
+acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
+       struct parms *parms, struct acl_flow_data *flows)
+{
+       uint64_t transition1, transition2;
+
+       /* extract transition from low 64 bits. */
+       transition1 = MM_CVT64(*indicies);
+
+       /* extract transition from high 64 bits. */
+       *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
+       transition2 = MM_CVT64(*indicies);
+
+       transition1 = acl_match_check_sse(transition1, slot, ctx,
+               parms, flows);
+       transition2 = acl_match_check_sse(transition2, slot + 1, ctx,
+               parms, flows);
+
+       /* update indicies with new transitions. */
+       *indicies = MM_SET64(transition2, transition1);
+}
+
+/*
+ * Check for a match in 2 transitions (contained in SSE register)
+ */
+static inline void
+acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms 
*parms,
+       struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
+{
+       xmm_t temp;
+
+       temp = MM_AND(match_mask, *indicies);
+       while (!MM_TESTZ(temp, temp)) {
+               acl_process_matches(indicies, slot, ctx, parms, flows);
+               temp = MM_AND(match_mask, *indicies);
+       }
+}
+
+/*
+ * Check for any match in 4 transitions (contained in 2 SSE registers)
+ */
+static inline void
+acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms 
*parms,
+       struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
+       xmm_t match_mask)
+{
+       xmm_t temp;
+
+       /* put low 32 bits of each transition into one register */
+       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
+               0x88);
+       /* test for match node */
+       temp = MM_AND(match_mask, temp);
+
+       while (!MM_TESTZ(temp, temp)) {
+               acl_process_matches(indicies1, slot, ctx, parms, flows);
+               acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
+
+               temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
+                                       (__m128)*indicies2,
+                                       0x88);
+               temp = MM_AND(match_mask, temp);
+       }
+}
+
+/*
+ * Calculate the address of the next transition for
+ * all types of nodes. Note that only DFA nodes and range
+ * nodes actually transition to another node. Match
+ * nodes don't move.
+ */
+static inline xmm_t
+acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+       xmm_t *indicies1, xmm_t *indicies2)
+{
+       xmm_t addr, node_types, temp;
+
+       /*
+        * Note that no transition is done for a match
+        * node and therefore a stream freezes when
+        * it reaches a match.
+        */
+
+       /* Shuffle low 32 into temp and high 32 into indicies2 */
+       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
+               0x88);
+       *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
+               (__m128)*indicies2, 0xdd);
+
+       /* Calc node type and node addr */
+       node_types = MM_ANDNOT(index_mask, temp);
+       addr = MM_AND(index_mask, temp);
+
+       /*
+        * Calc addr for DFAs - addr = dfa_index + input_byte
+        */
+
+       /* mask for DFA type (0) nodes */
+       temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
+
+       /* add input byte to DFA position */
+       temp = MM_AND(temp, bytes);
+       temp = MM_AND(temp, next_input);
+       addr = MM_ADD32(addr, temp);
+
+       /*
+        * Calc addr for Range nodes -> range_index + range(input)
+        */
+       node_types = MM_CMPEQ32(node_types, type_quad_range);
+
+       /*
+        * Calculate number of range boundaries that are less than the
+        * input value. Range boundaries for each node are in signed 8 bit,
+        * ordered from -128 to 127 in the indicies2 register.
+        * This is effectively a popcnt of bytes that are greater than the
+        * input byte.
+        */
+
+       /* shuffle input byte to all 4 positions of 32 bit value */
+       temp = MM_SHUFFLE8(next_input, shuffle_input);
+
+       /* check ranges */
+       temp = MM_CMPGT8(temp, *indicies2);
+
+       /* convert -1 to 1 (bytes greater than input byte */
+       temp = MM_SIGN8(temp, temp);
+
+       /* horizontal add pairs of bytes into words */
+       temp = MM_MADD8(temp, temp);
+
+       /* horizontal add pairs of words into dwords */
+       temp = MM_MADD16(temp, ones_16);
+
+       /* mask to range type nodes */
+       temp = MM_AND(temp, node_types);
+
+       /* add index into node position */
+       return MM_ADD32(addr, temp);
+}
+
+/*
+ * Process 4 transitions (in 2 SIMD registers) in parallel
+ */
+static inline xmm_t
+transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+       const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
+{
+       xmm_t addr;
+       uint64_t trans0, trans2;
+
+        /* Calculate the address (array index) for all 4 transitions. */
+
+       addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
+               bytes, type_quad_range, indicies1, indicies2);
+
+        /* Gather 64 bit transitions and pack back into 2 registers. */
+
+       trans0 = trans[MM_CVT32(addr)];
+
+       /* get slot 2 */
+
+       /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
+       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
+       trans2 = trans[MM_CVT32(addr)];
+
+       /* get slot 1 */
+
+       /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
+       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+       *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
+
+       /* get slot 3 */
+
+       /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
+       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
+       *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
+
+       return MM_SRL32(next_input, 8);
+}
+
+/*
+ * Execute trie traversal with 8 traversals in parallel
+ */
+static inline void
+search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
+       uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_SSE8];
+       struct completion cmplt[MAX_SEARCHES_SSE8];
+       struct parms parms[MAX_SEARCHES_SSE8];
+       xmm_t input0, input1;
+       xmm_t indicies1, indicies2, indicies3, indicies4;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+               total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       /*
+        * indicies1 contains index_array[0,1]
+        * indicies2 contains index_array[2,3]
+        * indicies3 contains index_array[4,5]
+        * indicies4 contains index_array[6,7]
+        */
+
+       indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
+       indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+       indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
+       indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
+
+        /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows,
+               &indicies1, &indicies2, mm_match_mask.m);
+       acl_match_check_x4(4, ctx, parms, &flows,
+               &indicies3, &indicies4, mm_match_mask.m);
+
+       while (flows.started > 0) {
+
+               /* Gather 4 bytes of input data for each stream. */
+               input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
+                       0);
+               input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
+                       0);
+
+               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+
+               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+
+               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+
+                /* Process the 4 bytes of input on each stream. */
+
+               input0 = transition4(mm_index_mask.m, input0,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+               input1 = transition4(mm_index_mask.m, input1,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies3, &indicies4);
+
+               input0 = transition4(mm_index_mask.m, input0,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+               input1 = transition4(mm_index_mask.m, input1,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies3, &indicies4);
+
+               input0 = transition4(mm_index_mask.m, input0,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+               input1 = transition4(mm_index_mask.m, input1,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies3, &indicies4);
+
+               input0 = transition4(mm_index_mask.m, input0,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+               input1 = transition4(mm_index_mask.m, input1,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies3, &indicies4);
+
+                /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows,
+                       &indicies1, &indicies2, mm_match_mask.m);
+               acl_match_check_x4(4, ctx, parms, &flows,
+                       &indicies3, &indicies4, mm_match_mask.m);
+       }
+}
+
+/*
+ * Execute trie traversal with 4 traversals in parallel
+ */
+static inline void
+search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
+        uint32_t *results, int total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_SSE4];
+       struct completion cmplt[MAX_SEARCHES_SSE4];
+       struct parms parms[MAX_SEARCHES_SSE4];
+       xmm_t input, indicies1, indicies2;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+               total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
+       indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+       /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows,
+               &indicies1, &indicies2, mm_match_mask.m);
+
+       while (flows.started > 0) {
+
+               /* Gather 4 bytes of input data for each stream. */
+               input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
+               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
+               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
+
+               /* Process the 4 bytes of input on each stream. */
+               input = transition4(mm_index_mask.m, input,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+                input = transition4(mm_index_mask.m, input,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+                input = transition4(mm_index_mask.m, input,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+                input = transition4(mm_index_mask.m, input,
+                       mm_shuffle_input.m, mm_ones_16.m,
+                       mm_bytes.m, mm_type_quad_range.m,
+                       flows.trans, &indicies1, &indicies2);
+
+               /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows,
+                       &indicies1, &indicies2, mm_match_mask.m);
+       }
+}
+
+static inline xmm_t
+transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
+       const uint64_t *trans, xmm_t *indicies1)
+{
+       uint64_t t;
+       xmm_t addr, indicies2;
+
+       indicies2 = MM_XOR(ones_16, ones_16);
+
+       addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
+               bytes, type_quad_range, indicies1, &indicies2);
+
+       /* Gather 64 bit transitions and pack 2 per register. */
+
+       t = trans[MM_CVT32(addr)];
+
+       /* get slot 1 */
+       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+       *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
+
+       return MM_SRL32(next_input, 8);
+}
+
+/*
+ * Execute trie traversal with 2 traversals in parallel.
+ */
+static inline void
+search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
+       uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_SSE2];
+       struct completion cmplt[MAX_SEARCHES_SSE2];
+       struct parms parms[MAX_SEARCHES_SSE2];
+       xmm_t input, indicies;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+               total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       indicies = MM_LOADU((xmm_t *) &index_array[0]);
+
+       /* Check for any matches. */
+       acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
+
+       while (flows.started > 0) {
+
+               /* Gather 4 bytes of input data for each stream. */
+               input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
+               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+
+               /* Process the 4 bytes of input on each stream. */
+
+               input = transition2(mm_index_mask64.m, input,
+                       mm_shuffle_input64.m, mm_ones_16.m,
+                       mm_bytes64.m, mm_type_quad_range64.m,
+                       flows.trans, &indicies);
+
+               input = transition2(mm_index_mask64.m, input,
+                       mm_shuffle_input64.m, mm_ones_16.m,
+                       mm_bytes64.m, mm_type_quad_range64.m,
+                       flows.trans, &indicies);
+
+               input = transition2(mm_index_mask64.m, input,
+                       mm_shuffle_input64.m, mm_ones_16.m,
+                       mm_bytes64.m, mm_type_quad_range64.m,
+                       flows.trans, &indicies);
+
+               input = transition2(mm_index_mask64.m, input,
+                       mm_shuffle_input64.m, mm_ones_16.m,
+                       mm_bytes64.m, mm_type_quad_range64.m,
+                       flows.trans, &indicies);
+
+               /* Check for any matches. */
+               acl_match_check_x2(0, ctx, parms, &flows, &indicies,
+                       mm_match_mask64.m);
+       }
+}
+
+int
+rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
+       uint32_t *results, uint32_t num, uint32_t categories)
+{
+       if (categories != 1 &&
+               ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
+               return -EINVAL;
+
+       if (likely(num >= MAX_SEARCHES_SSE8))
+               search_sse_8(ctx, data, results, num, categories);
+       else if (num >= MAX_SEARCHES_SSE4)
+               search_sse_4(ctx, data, results, num, categories);
+       else
+               search_sse_2(ctx, data, results, num, categories);
+
+       return 0;
+}
+
+#endif /* _ACL_RUN_SSE_H_ */
diff --git a/lib/librte_acl/rte_acl.h b/lib/librte_acl/rte_acl.h
index afc0f69..ab4965f 100644
--- a/lib/librte_acl/rte_acl.h
+++ b/lib/librte_acl/rte_acl.h
@@ -267,6 +267,7 @@ rte_acl_reset(struct rte_acl_ctx *ctx);
  * RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES.
  * If more than one rule is applicable for given input buffer and
  * given category, then rule with highest priority will be returned as a match.
+ * Note, that it requires SSE4.1 support.
  * Note, that it is a caller responsibility to ensure that input parameters
  * are valid and point to correct memory locations.
  *
@@ -286,9 +287,10 @@ rte_acl_reset(struct rte_acl_ctx *ctx);
  * @return
  *   zero on successful completion.
  *   -EINVAL for incorrect arguments.
+ *   -ENOTSUP for unsupported platforms.
  */
 int
-rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
+rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
        uint32_t *results, uint32_t num, uint32_t categories);

 /**
@@ -327,6 +329,14 @@ int
 rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
        uint32_t *results, uint32_t num, uint32_t categories);

+#ifdef __SSE4_1__
+#define        rte_acl_classify(ctx, data, results, num, categories)   \
+       rte_acl_classify_sse(ctx, data, results, num, categories)
+#else
+#define        rte_acl_classify(ctx, data, results, num, categories)   \
+       rte_acl_classify_scalar(ctx, data, results, num, categories)
+#endif /* __SSE4_1__ */
+
 /**
  * Dump an ACL context structure to the console.
  *
-- 
1.8.5.3

Reply via email to