On 3/19/11 3:49 PM, er...@apache.org wrote:
> Author: erans
> Date: Sat Mar 19 22:49:59 2011
> New Revision: 1083323
>
> URL: http://svn.apache.org/viewvc?rev=1083323&view=rev
> Log:
> MATH-446
> Removed checked exceptions.
> Some Javadoc cleanup.
> Tests upgraded to Junit 4 (MATH-423).
>
Gilles,

This should have been done in three separate commits.

The first one, at least, should have been separated.  It is easier
for reviewers and makes the commit log clearer if we separate
formatting / javadoc cleanup commits from those that update or
change the code.  The JIRA reference will pull all of these diffs
under the referenced issue.  It is better if the commits that
reference the issue are directly related to the issue.

Thanks,

Phil
> Modified:
>     
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Beta.java
>     
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Erf.java
>     
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Gamma.java
>     
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/BetaTest.java
>     
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/ErfTest.java
>     
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/GammaTest.java
>
> Modified: 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Beta.java
> URL: 
> http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Beta.java?rev=1083323&r1=1083322&r2=1083323&view=diff
> ==============================================================================
> --- 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Beta.java
>  (original)
> +++ 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Beta.java
>  Sat Mar 19 22:49:59 2011
> @@ -16,7 +16,6 @@
>   */
>  package org.apache.commons.math.special;
>  
> -import org.apache.commons.math.MathException;
>  import org.apache.commons.math.util.ContinuedFraction;
>  import org.apache.commons.math.util.FastMath;
>  
> @@ -27,31 +26,28 @@ import org.apache.commons.math.util.Fast
>   * @version $Revision$ $Date$
>   */
>  public class Beta {
> -
>      /** Maximum allowed numerical error. */
>      private static final double DEFAULT_EPSILON = 10e-15;
>  
>      /**
>       * Default constructor.  Prohibit instantiation.
>       */
> -    private Beta() {
> -        super();
> -    }
> +    private Beta() {}
>  
>      /**
>       * Returns the
>       * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html";>
>       * regularized beta function</a> I(x, a, b).
>       *
> -     * @param x the value.
> -     * @param a the a parameter.
> -     * @param b the b parameter.
> -     * @return the regularized beta function I(x, a, b)
> +     * @param x Value.
> +     * @param a Parameter {@code a}.
> +     * @param b Parameter {@code b}.
> +     * @return the regularized beta function I(x, a, b).
> +     * @throws org.apache.commons.math.exception.MaxCountExceededException
> +     * if the algorithm fails to converge.
>       * @throws MathException if the algorithm fails to converge.
>       */
> -    public static double regularizedBeta(double x, double a, double b)
> -        throws MathException
> -    {
> +    public static double regularizedBeta(double x, double a, double b) {
>          return regularizedBeta(x, a, b, DEFAULT_EPSILON, Integer.MAX_VALUE);
>      }
>  
> @@ -60,18 +56,19 @@ public class Beta {
>       * <a href="http://mathworld.wolfram.com/RegularizedBetaFunction.html";>
>       * regularized beta function</a> I(x, a, b).
>       *
> -     * @param x the value.
> -     * @param a the a parameter.
> -     * @param b the b parameter.
> +     * @param x Value.
> +     * @param a Parameter {@code a}.
> +     * @param b Parameter {@code b}.
>       * @param epsilon When the absolute value of the nth item in the
> -     *                series is less than epsilon the approximation ceases
> -     *                to calculate further elements in the series.
> +     * series is less than epsilon the approximation ceases to calculate
> +     * further elements in the series.
>       * @return the regularized beta function I(x, a, b)
> -     * @throws MathException if the algorithm fails to converge.
> +     * @throws org.apache.commons.math.exception.MaxCountExceededException
> +     * if the algorithm fails to converge.
>       */
> -    public static double regularizedBeta(double x, double a, double b,
> -        double epsilon) throws MathException
> -    {
> +    public static double regularizedBeta(double x,
> +                                         double a, double b,
> +                                         double epsilon) {
>          return regularizedBeta(x, a, b, epsilon, Integer.MAX_VALUE);
>      }
>  
> @@ -79,15 +76,16 @@ public class Beta {
>       * Returns the regularized beta function I(x, a, b).
>       *
>       * @param x the value.
> -     * @param a the a parameter.
> -     * @param b the b parameter.
> +     * @param a Parameter {@code a}.
> +     * @param b Parameter {@code b}.
>       * @param maxIterations Maximum number of "iterations" to complete.
>       * @return the regularized beta function I(x, a, b)
> -     * @throws MathException if the algorithm fails to converge.
> +     * @throws org.apache.commons.math.exception.MaxCountExceededException
> +     * if the algorithm fails to converge.
>       */
> -    public static double regularizedBeta(double x, double a, double b,
> -        int maxIterations) throws MathException
> -    {
> +    public static double regularizedBeta(double x,
> +                                         double a, double b,
> +                                         int maxIterations) {
>          return regularizedBeta(x, a, b, DEFAULT_EPSILON, maxIterations);
>      }
>  
> @@ -105,23 +103,28 @@ public class Beta {
>       * </ul>
>       *
>       * @param x the value.
> -     * @param a the a parameter.
> -     * @param b the b parameter.
> +     * @param a Parameter {@code a}.
> +     * @param b Parameter {@code b}.
>       * @param epsilon When the absolute value of the nth item in the
> -     *                series is less than epsilon the approximation ceases
> -     *                to calculate further elements in the series.
> +     * series is less than epsilon the approximation ceases to calculate
> +     * further elements in the series.
>       * @param maxIterations Maximum number of "iterations" to complete.
>       * @return the regularized beta function I(x, a, b)
> -     * @throws MathException if the algorithm fails to converge.
> +     * @throws org.apache.commons.math.exception.MaxCountExceededException
> +     * if the algorithm fails to converge.
>       */
> -    public static double regularizedBeta(double x, final double a,
> -        final double b, double epsilon, int maxIterations) throws 
> MathException
> -    {
> +    public static double regularizedBeta(double x,
> +                                         final double a, final double b,
> +                                         double epsilon, int maxIterations) {
>          double ret;
>  
> -        if (Double.isNaN(x) || Double.isNaN(a) || Double.isNaN(b) || (x < 0) 
> ||
> -            (x > 1) || (a <= 0.0) || (b <= 0.0))
> -        {
> +        if (Double.isNaN(x) ||
> +            Double.isNaN(a) ||
> +            Double.isNaN(b) ||
> +            x < 0 ||
> +            x > 1 ||
> +            a <= 0.0 ||
> +            b <= 0.0) {
>              ret = Double.NaN;
>          } else if (x > (a + 1.0) / (a + b + 2.0)) {
>              ret = 1.0 - regularizedBeta(1.0 - x, b, a, epsilon, 
> maxIterations);
> @@ -160,9 +163,9 @@ public class Beta {
>      /**
>       * Returns the natural logarithm of the beta function B(a, b).
>       *
> -     * @param a the a parameter.
> -     * @param b the b parameter.
> -     * @return log(B(a, b))
> +     * @param a Parameter {@code a}.
> +     * @param b Parameter {@code b}.
> +     * @return log(B(a, b)).
>       */
>      public static double logBeta(double a, double b) {
>          return logBeta(a, b, DEFAULT_EPSILON, Integer.MAX_VALUE);
> @@ -177,20 +180,23 @@ public class Beta {
>       * Beta Function</a>, equation (1).</li>
>       * </ul>
>       *
> -     * @param a the a parameter.
> -     * @param b the b parameter.
> +     * @param a Parameter {@code a}.
> +     * @param b Parameter {@code b}.
>       * @param epsilon When the absolute value of the nth item in the
> -     *                series is less than epsilon the approximation ceases
> -     *                to calculate further elements in the series.
> +     * series is less than epsilon the approximation ceases to calculate
> +     * further elements in the series.
>       * @param maxIterations Maximum number of "iterations" to complete.
> -     * @return log(B(a, b))
> +     * @return log(B(a, b)).
>       */
> -    public static double logBeta(double a, double b, double epsilon,
> -        int maxIterations) {
> -
> +    public static double logBeta(double a, double b,
> +                                 double epsilon,
> +                                 int maxIterations) {
>          double ret;
>  
> -        if (Double.isNaN(a) || Double.isNaN(b) || (a <= 0.0) || (b <= 0.0)) {
> +        if (Double.isNaN(a) ||
> +            Double.isNaN(b) ||
> +            a <= 0.0 ||
> +            b <= 0.0) {
>              ret = Double.NaN;
>          } else {
>              ret = Gamma.logGamma(a) + Gamma.logGamma(b) -
>
> Modified: 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Erf.java
> URL: 
> http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Erf.java?rev=1083323&r1=1083322&r2=1083323&view=diff
> ==============================================================================
> --- 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Erf.java
>  (original)
> +++ 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Erf.java
>  Sat Mar 19 22:49:59 2011
> @@ -16,7 +16,6 @@
>   */
>  package org.apache.commons.math.special;
>  
> -import org.apache.commons.math.MathException;
>  import org.apache.commons.math.util.FastMath;
>  
>  /**
> @@ -26,32 +25,32 @@ import org.apache.commons.math.util.Fast
>   * @version $Revision$ $Date$
>   */
>  public class Erf {
> -
>      /**
>       * Default constructor.  Prohibit instantiation.
>       */
> -    private Erf() {
> -        super();
> -    }
> +    private Erf() {}
>  
>      /**
> -     * <p>Returns the error function</p>
> +     * Returns the error function.
> +     *
>       * <p>erf(x) = 2/&radic;&pi; <sub>0</sub>&int;<sup>x</sup> 
> e<sup>-t<sup>2</sup></sup>dt </p>
>       *
>       * <p>This implementation computes erf(x) using the
>       * {@link Gamma#regularizedGammaP(double, double, double, int) 
> regularized gamma function},
>       * following <a href="http://mathworld.wolfram.com/Erf.html";> Erf</a>, 
> equation (3)</p>
>       *
> -     * <p>The value returned is always between -1 and 1 (inclusive).  If 
> {@code abs(x) > 40}, then
> -     * {@code erf(x)} is indistinguishable from either 1 or -1 as a double, 
> so the appropriate extreme
> -     * value is returned.</p>
> +     * <p>The value returned is always between -1 and 1 (inclusive).
> +     * If {@code abs(x) > 40}, then {@code erf(x)} is indistinguishable from
> +     * either 1 or -1 as a double, so the appropriate extreme value is 
> returned.
> +     * </p>
>       *
>       * @param x the value.
>       * @return the error function erf(x)
> -     * @throws MathException if the algorithm fails to converge.
> +     * @throws org.apache.commons.math.exception.MaxCountExceededException
> +     * if the algorithm fails to converge.
>       * @see Gamma#regularizedGammaP(double, double, double, int)
>       */
> -    public static double erf(double x) throws MathException {
> +    public static double erf(double x) {
>          if (FastMath.abs(x) > 40) {
>              return x > 0 ? 1 : -1;
>          }
> @@ -63,25 +62,29 @@ public class Erf {
>      }
>  
>      /**
> -     * <p>Returns the complementary error function</p>
> -     * <p>erfc(x) = 2/&radic;&pi; <sub>x</sub>&int;<sup>&infin;</sup> 
> e<sup>-t<sup>2</sup></sup>dt <br/>
> +     * Returns the complementary error function.
> +     *
> +     * <p>erfc(x) = 2/&radic;&pi; <sub>x</sub>&int;<sup>&infin;</sup> 
> e<sup>-t<sup>2</sup></sup>dt
> +     * <br/>
>       *    = 1 - {@link #erf(double) erf(x)} </p>
>       *
>       * <p>This implementation computes erfc(x) using the
>       * {@link Gamma#regularizedGammaQ(double, double, double, int) 
> regularized gamma function},
>       * following <a href="http://mathworld.wolfram.com/Erf.html";> Erf</a>, 
> equation (3).</p>
>       *
> -     * <p>The value returned is always between 0 and 2 (inclusive).  If 
> {@code abs(x) > 40}, then
> -     * {@code erf(x)} is indistinguishable from either 0 or 2 as a double, 
> so the appropriate extreme
> -     * value is returned.</p>
> +     * <p>The value returned is always between 0 and 2 (inclusive).
> +     * If {@code abs(x) > 40}, then {@code erf(x)} is indistinguishable from
> +     * either 0 or 2 as a double, so the appropriate extreme value is 
> returned.
> +     * </p>
>       *
>       * @param x the value
>       * @return the complementary error function erfc(x)
> -     * @throws MathException if the algorithm fails to converge
> +     * @throws org.apache.commons.math.exception.MaxCountExceededException
> +     * if the algorithm fails to converge.
>       * @see Gamma#regularizedGammaQ(double, double, double, int)
>       * @since 2.2
>       */
> -    public static double erfc(double x) throws MathException {
> +    public static double erfc(double x) {
>          if (FastMath.abs(x) > 40) {
>              return x > 0 ? 0 : 2;
>          }
>
> Modified: 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Gamma.java
> URL: 
> http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Gamma.java?rev=1083323&r1=1083322&r2=1083323&view=diff
> ==============================================================================
> --- 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Gamma.java
>  (original)
> +++ 
> commons/proper/math/trunk/src/main/java/org/apache/commons/math/special/Gamma.java
>  Sat Mar 19 22:49:59 2011
> @@ -16,7 +16,6 @@
>   */
>  package org.apache.commons.math.special;
>  
> -import org.apache.commons.math.MathException;
>  import org.apache.commons.math.exception.MaxCountExceededException;
>  import org.apache.commons.math.util.ContinuedFraction;
>  import org.apache.commons.math.util.FastMath;
> @@ -28,19 +27,15 @@ import org.apache.commons.math.util.Fast
>   * @version $Revision$ $Date$
>   */
>  public class Gamma {
> -
>      /**
>       * <a 
> href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant";>Euler-Mascheroni
>  constant</a>
>       * @since 2.0
>       */
>      public static final double GAMMA = 0.577215664901532860606512090082;
> -
>      /** Maximum allowed numerical error. */
>      private static final double DEFAULT_EPSILON = 10e-15;
> -
>      /** Lanczos coefficients */
> -    private static final double[] LANCZOS =
> -    {
> +    private static final double[] LANCZOS = {
>          0.99999999999999709182,
>          57.156235665862923517,
>          -59.597960355475491248,
> @@ -57,23 +52,18 @@ public class Gamma {
>          -.26190838401581408670e-4,
>          .36899182659531622704e-5,
>      };
> -
>      /** Avoid repeated computation of log of 2 PI in logGamma */
>      private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(2.0 * 
> FastMath.PI);
> -
>      // limits for switching algorithm in digamma
>      /** C limit. */
>      private static final double C_LIMIT = 49;
> -
>      /** S limit. */
>      private static final double S_LIMIT = 1e-5;
>  
>      /**
>       * Default constructor.  Prohibit instantiation.
>       */
> -    private Gamma() {
> -        super();
> -    }
> +    private Gamma() {}
>  
>      /**
>       * Returns the natural logarithm of the gamma function &#915;(x).
> @@ -89,7 +79,7 @@ public class Gamma {
>       * </a></li>
>       * </ul>
>       *
> -     * @param x the value.
> +     * @param x Value.
>       * @return log(&#915;(x))
>       */
>      public static double logGamma(double x) {
> @@ -117,50 +107,47 @@ public class Gamma {
>      /**
>       * Returns the regularized gamma function P(a, x).
>       *
> -     * @param a the a parameter.
> -     * @param x the value.
> -     * @return the regularized gamma function P(a, x)
> -     * @throws MathException if the algorithm fails to converge.
> +     * @param a Parameter.
> +     * @param x Value.
> +     * @return the regularized gamma function P(a, x).
> +     * @throws MaxCountExceededException if the algorithm fails to converge.
>       */
> -    public static double regularizedGammaP(double a, double x)
> -        throws MathException
> -    {
> +    public static double regularizedGammaP(double a, double x) {
>          return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
>      }
>  
> -
>      /**
>       * Returns the regularized gamma function P(a, x).
>       *
>       * The implementation of this method is based on:
>       * <ul>
> -     * <li>
> -     * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html";>
> -     * Regularized Gamma Function</a>, equation (1).</li>
> -     * <li>
> -     * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html";>
> -     * Incomplete Gamma Function</a>, equation (4).</li>
> -     * <li>
> -     * <a 
> href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html";>
> -     * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
> -     * </li>
> +     *  <li>
> +     *   <a 
> href="http://mathworld.wolfram.com/RegularizedGammaFunction.html";>
> +     *   Regularized Gamma Function</a>, equation (1)
> +     *  </li>
> +     *  <li>
> +     *   <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html";>
> +     *   Incomplete Gamma Function</a>, equation (4).
> +     *  </li>
> +     *  <li>
> +     *   <a 
> href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html";>
> +     *   Confluent Hypergeometric Function of the First Kind</a>, equation 
> (1).
> +     *  </li>
>       * </ul>
>       *
>       * @param a the a parameter.
>       * @param x the value.
>       * @param epsilon When the absolute value of the nth item in the
> -     *                series is less than epsilon the approximation ceases
> -     *                to calculate further elements in the series.
> +     * series is less than epsilon the approximation ceases to calculate
> +     * further elements in the series.
>       * @param maxIterations Maximum number of "iterations" to complete.
>       * @return the regularized gamma function P(a, x)
> -     * @throws MathException if the algorithm fails to converge.
> +     * @throws MaxCountExceededException if the algorithm fails to converge.
>       */
>      public static double regularizedGammaP(double a,
>                                             double x,
>                                             double epsilon,
> -                                           int maxIterations)
> -        throws MathException
> -    {
> +                                           int maxIterations) {
>          double ret;
>  
>          if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
> @@ -176,7 +163,9 @@ public class Gamma {
>              double n = 0.0; // current element index
>              double an = 1.0 / a; // n-th element in the series
>              double sum = an; // partial sum
> -            while (FastMath.abs(an/sum) > epsilon && n < maxIterations && 
> sum < Double.POSITIVE_INFINITY) {
> +            while (FastMath.abs(an/sum) > epsilon &&
> +                   n < maxIterations &&
> +                   sum < Double.POSITIVE_INFINITY) {
>                  // compute next element in the series
>                  n = n + 1.0;
>                  an = an * (x / (a + n));
> @@ -204,9 +193,7 @@ public class Gamma {
>       * @return the regularized gamma function Q(a, x)
>       * @throws MathException if the algorithm fails to converge.
>       */
> -    public static double regularizedGammaQ(double a, double x)
> -        throws MathException
> -    {
> +    public static double regularizedGammaQ(double a, double x) {
>          return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
>      }
>  
> @@ -215,29 +202,30 @@ public class Gamma {
>       *
>       * The implementation of this method is based on:
>       * <ul>
> -     * <li>
> -     * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html";>
> -     * Regularized Gamma Function</a>, equation (1).</li>
> -     * <li>
> -     * <a 
> href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/";>
> -     * Regularized incomplete gamma function: Continued fraction 
> representations  (formula 06.08.10.0003)</a></li>
> +     *  <li>
> +     *   <a 
> href="http://mathworld.wolfram.com/RegularizedGammaFunction.html";>
> +     *   Regularized Gamma Function</a>, equation (1).
> +     *  </li>
> +     *  <li>
> +     *   <a 
> href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/";>
> +     *   Regularized incomplete gamma function: Continued fraction 
> representations
> +     *   (formula 06.08.10.0003)</a>
> +     *  </li>
>       * </ul>
>       *
>       * @param a the a parameter.
>       * @param x the value.
>       * @param epsilon When the absolute value of the nth item in the
> -     *                series is less than epsilon the approximation ceases
> -     *                to calculate further elements in the series.
> +     * series is less than epsilon the approximation ceases to calculate
> +     * further elements in the series.
>       * @param maxIterations Maximum number of "iterations" to complete.
>       * @return the regularized gamma function P(a, x)
> -     * @throws MathException if the algorithm fails to converge.
> +     * @throws MaxCountExceededException if the algorithm fails to converge.
>       */
>      public static double regularizedGammaQ(final double a,
>                                             double x,
>                                             double epsilon,
> -                                           int maxIterations)
> -        throws MathException
> -    {
> +                                           int maxIterations) {
>          double ret;
>  
>          if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
> @@ -285,10 +273,10 @@ public class Gamma {
>       * |x|).  Accuracy for negative values of x should be about 10^-8 
> absolute for results
>       * less than 10^5 and 10^-8 relative for results larger than that.</p>
>       *
> -     * @param x  the argument
> -     * @return   digamma(x) to within 10-8 relative or absolute error 
> whichever is smaller
> -     * @see <a href="http://en.wikipedia.org/wiki/Digamma_function";> Digamma 
> at wikipedia </a>
> -     * @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf";> 
> Bernardo&apos;s original article </a>
> +     * @param x Argument.
> +     * @return digamma(x) to within 10-8 relative or absolute error 
> whichever is smaller.
> +     * @see <a 
> href="http://en.wikipedia.org/wiki/Digamma_function";>Digamma</a>
> +     * @see <a 
> href="http://www.uv.es/~bernardo/1976AppStatist.pdf";>Bernardo&apos;s original 
> article </a>
>       * @since 2.0
>       */
>      public static double digamma(double x) {
> @@ -311,12 +299,13 @@ public class Gamma {
>      }
>  
>      /**
> -     * <p>Computes the trigamma function of x.  This function is derived by 
> taking the derivative of
> -     * the implementation of digamma.</p>
> -     *
> -     * @param x  the argument
> -     * @return   trigamma(x) to within 10-8 relative or absolute error 
> whichever is smaller
> -     * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function";> 
> Trigamma at wikipedia </a>
> +     * Computes the trigamma function of x.
> +     * This function is derived by taking the derivative of the 
> implementation
> +     * of digamma.
> +     *
> +     * @param x Argument.
> +     * @return trigamma(x) to within 10-8 relative or absolute error 
> whichever is smaller
> +     * @see <a 
> href="http://en.wikipedia.org/wiki/Trigamma_function";>Trigamma</a>
>       * @see Gamma#digamma(double)
>       * @since 2.0
>       */
>
> Modified: 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/BetaTest.java
> URL: 
> http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/BetaTest.java?rev=1083323&r1=1083322&r2=1083323&view=diff
> ==============================================================================
> --- 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/BetaTest.java
>  (original)
> +++ 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/BetaTest.java
>  Sat Mar 19 22:49:59 2011
> @@ -16,32 +16,19 @@
>   */
>  package org.apache.commons.math.special;
>  
> -import org.apache.commons.math.MathException;
>  import org.apache.commons.math.TestUtils;
>  
> -import junit.framework.TestCase;
> +import org.junit.Test;
> +import org.junit.Assert;
>  
>  /**
>   * @version $Revision$ $Date$
>   */
> -public class BetaTest extends TestCase {
> -    /**
> -     * Constructor for BetaTest.
> -     * @param name
> -     */
> -    public BetaTest(String name) {
> -        super(name);
> -    }
> -
> -    private void testRegularizedBeta(double expected, double x, double a,
> -        double b)
> -    {
> -        try {
> -            double actual = Beta.regularizedBeta(x, a, b);
> -            TestUtils.assertEquals(expected, actual, 10e-15);
> -        } catch(MathException ex){
> -            fail(ex.getMessage());
> -        }
> +public class BetaTest {
> +    private void testRegularizedBeta(double expected, double x,
> +                                     double a, double b) {
> +        double actual = Beta.regularizedBeta(x, a, b);
> +        TestUtils.assertEquals(expected, actual, 10e-15);
>      }
>  
>      private void testLogBeta(double expected, double a, double b) {
> @@ -49,70 +36,87 @@ public class BetaTest extends TestCase {
>          TestUtils.assertEquals(expected, actual, 10e-15);
>      }
>  
> +    @Test
>      public void testRegularizedBetaNanPositivePositive() {
>          testRegularizedBeta(Double.NaN, Double.NaN, 1.0, 1.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaPositiveNanPositive() {
>          testRegularizedBeta(Double.NaN, 0.5, Double.NaN, 1.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaPositivePositiveNan() {
>          testRegularizedBeta(Double.NaN, 0.5, 1.0, Double.NaN);
>      }
>  
> +    @Test
>      public void testRegularizedBetaNegativePositivePositive() {
>          testRegularizedBeta(Double.NaN, -0.5, 1.0, 2.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaPositiveNegativePositive() {
>          testRegularizedBeta(Double.NaN, 0.5, -1.0, 2.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaPositivePositiveNegative() {
>          testRegularizedBeta(Double.NaN, 0.5, 1.0, -2.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaZeroPositivePositive() {
>          testRegularizedBeta(0.0, 0.0, 1.0, 2.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaPositiveZeroPositive() {
>          testRegularizedBeta(Double.NaN, 0.5, 0.0, 2.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaPositivePositiveZero() {
>          testRegularizedBeta(Double.NaN, 0.5, 1.0, 0.0);
>      }
>  
> +    @Test
>      public void testRegularizedBetaPositivePositivePositive() {
>          testRegularizedBeta(0.75, 0.5, 1.0, 2.0);
>      }
>  
> +    @Test
>      public void testLogBetaNanPositive() {
>          testLogBeta(Double.NaN, Double.NaN, 2.0);
>      }
>  
> +    @Test
>      public void testLogBetaPositiveNan() {
>          testLogBeta(Double.NaN, 1.0, Double.NaN);
>      }
>  
> +    @Test
>      public void testLogBetaNegativePositive() {
>          testLogBeta(Double.NaN, -1.0, 2.0);
>      }
>  
> +    @Test
>      public void testLogBetaPositiveNegative() {
>          testLogBeta(Double.NaN, 1.0, -2.0);
>      }
>  
> +    @Test
>      public void testLogBetaZeroPositive() {
>          testLogBeta(Double.NaN, 0.0, 2.0);
>      }
>  
> +    @Test
>      public void testLogBetaPositiveZero() {
>          testLogBeta(Double.NaN, 1.0, 0.0);
>      }
>  
> +    @Test
>      public void testLogBetaPositivePositive() {
>          testLogBeta(-0.693147180559945, 1.0, 2.0);
>      }
>
> Modified: 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/ErfTest.java
> URL: 
> http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/ErfTest.java?rev=1083323&r1=1083322&r2=1083323&view=diff
> ==============================================================================
> --- 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/ErfTest.java
>  (original)
> +++ 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/ErfTest.java
>  Sat Mar 19 22:49:59 2011
> @@ -17,104 +17,110 @@
>  
>  package org.apache.commons.math.special;
>  
> -import org.apache.commons.math.MathException;
>  import org.apache.commons.math.TestUtils;
>  import org.apache.commons.math.util.FastMath;
>  
> -import junit.framework.TestCase;
> +import org.junit.Test;
> +import org.junit.Assert;
>  
>  /**
>   * @version $Revision$ $Date$
>   */
> -public class ErfTest extends TestCase {
> -
> -    public void testErf0() throws MathException {
> +public class ErfTest {
> +    @Test
> +    public void testErf0() {
>          double actual = Erf.erf(0.0);
>          double expected = 0.0;
> -        assertEquals(expected, actual, 1.0e-15);
> -        assertEquals(1 - expected, Erf.erfc(0.0), 1.0e-15);
> +        Assert.assertEquals(expected, actual, 1.0e-15);
> +        Assert.assertEquals(1 - expected, Erf.erfc(0.0), 1.0e-15);
>      }
>  
> -    public void testErf1960() throws MathException {
> +    @Test
> +    public void testErf1960() {
>          double x = 1.960 / FastMath.sqrt(2.0);
>          double actual = Erf.erf(x);
>          double expected = 0.95;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - actual, Erf.erfc(x), 1.0e-15);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - actual, Erf.erfc(x), 1.0e-15);
>  
>          actual = Erf.erf(-x);
>          expected = -expected;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
>      }
>  
> -    public void testErf2576() throws MathException {
> +    @Test
> +    public void testErf2576() {
>          double x = 2.576 / FastMath.sqrt(2.0);
>          double actual = Erf.erf(x);
>          double expected = 0.99;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - actual, Erf.erfc(x), 1e-15);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - actual, Erf.erfc(x), 1e-15);
>  
>          actual = Erf.erf(-x);
>          expected = -expected;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
>      }
>  
> -    public void testErf2807() throws MathException {
> +    @Test
> +    public void testErf2807() {
>          double x = 2.807 / FastMath.sqrt(2.0);
>          double actual = Erf.erf(x);
>          double expected = 0.995;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - actual, Erf.erfc(x), 1.0e-15);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - actual, Erf.erfc(x), 1.0e-15);
>  
>          actual = Erf.erf(-x);
>          expected = -expected;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - actual, Erf.erfc(-x), 1.0e-15);
>      }
>  
> -    public void testErf3291() throws MathException {
> +    @Test
> +    public void testErf3291() {
>          double x = 3.291 / FastMath.sqrt(2.0);
>          double actual = Erf.erf(x);
>          double expected = 0.999;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - expected, Erf.erfc(x), 1.0e-5);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - expected, Erf.erfc(x), 1.0e-5);
>  
>          actual = Erf.erf(-x);
>          expected = -expected;
> -        assertEquals(expected, actual, 1.0e-5);
> -        assertEquals(1 - expected, Erf.erfc(-x), 1.0e-5);
> +        Assert.assertEquals(expected, actual, 1.0e-5);
> +        Assert.assertEquals(1 - expected, Erf.erfc(-x), 1.0e-5);
>      }
>      
>      /**
>       * MATH-301, MATH-456
>       */
> +    @Test
>      public void testLargeValues() throws Exception {
>          for (int i = 1; i < 200; i*=10) {
>              double result = Erf.erf(i);
> -            assertFalse(Double.isNaN(result));
> -            assertTrue(result > 0 && result <= 1);
> +            Assert.assertFalse(Double.isNaN(result));
> +            Assert.assertTrue(result > 0 && result <= 1);
>              result = Erf.erf(-i);
> -            assertFalse(Double.isNaN(result));
> -            assertTrue(result >= -1 && result < 0);
> +            Assert.assertFalse(Double.isNaN(result));
> +            Assert.assertTrue(result >= -1 && result < 0);
>              result = Erf.erfc(i);
> -            assertFalse(Double.isNaN(result));
> -            assertTrue(result >= 0 && result < 1);
> +            Assert.assertFalse(Double.isNaN(result));
> +            Assert.assertTrue(result >= 0 && result < 1);
>              result = Erf.erfc(-i);
> -            assertFalse(Double.isNaN(result));
> -            assertTrue(result >= 1 && result <= 2);    
> +            Assert.assertFalse(Double.isNaN(result));
> +            Assert.assertTrue(result >= 1 && result <= 2);    
>          }
> -        assertEquals(-1, Erf.erf(Double.NEGATIVE_INFINITY), 0);
> -        assertEquals(1, Erf.erf(Double.POSITIVE_INFINITY), 0);
> -        assertEquals(2, Erf.erfc(Double.NEGATIVE_INFINITY), 0);
> -        assertEquals(0, Erf.erfc(Double.POSITIVE_INFINITY), 0);
> +        Assert.assertEquals(-1, Erf.erf(Double.NEGATIVE_INFINITY), 0);
> +        Assert.assertEquals(1, Erf.erf(Double.POSITIVE_INFINITY), 0);
> +        Assert.assertEquals(2, Erf.erfc(Double.NEGATIVE_INFINITY), 0);
> +        Assert.assertEquals(0, Erf.erfc(Double.POSITIVE_INFINITY), 0);
>      }
>      
>      /**
>       * Compare Erf.erf against reference values computed using GCC 4.2.1 
> (Apple OSX packaged version)
>       * erfl (extended precision erf).
>       */
> +    @Test
>      public void testErfGnu() throws Exception {
>          final double tol = 1E-15;
>          final double[] gnuValues = new double[] {-1, -1, -1, -1, -1, 
> @@ -129,7 +135,7 @@ public class ErfTest extends TestCase {
>           1,  1,  1,  1};
>          double x = -10d;
>          for (int i = 0; i < 41; i++) {
> -            assertEquals(gnuValues[i], Erf.erf(x), tol);
> +            Assert.assertEquals(gnuValues[i], Erf.erf(x), tol);
>              x += 0.5d;
>          }
>      }
> @@ -138,6 +144,7 @@ public class ErfTest extends TestCase {
>       * Compare Erf.erfc against reference values computed using GCC 4.2.1 
> (Apple OSX packaged version)
>       * erfcl (extended precision erfc).
>       */
> +    @Test
>      public void testErfcGnu() throws Exception {
>          final double tol = 1E-15;
>          final double[] gnuValues = new double[] { 2,  2,  2,  2,  2, 
> @@ -152,7 +159,7 @@ public class ErfTest extends TestCase {
>          2.7623240713337714448E-33, 4.1370317465138102353E-37, 
> 3.7692144856548799402E-41, 2.0884875837625447567E-45};
>          double x = -10d;
>          for (int i = 0; i < 41; i++) {
> -            assertEquals(gnuValues[i], Erf.erfc(x), tol);
> +            Assert.assertEquals(gnuValues[i], Erf.erfc(x), tol);
>              x += 0.5d;
>          }
>      }
> @@ -162,6 +169,7 @@ public class ErfTest extends TestCase {
>       * "Evaluating the Normal Distribution," Journal of Statistical 
> Software, July, 2004.
>       * http//www.jstatsoft.org/v11/a05/paper
>       */
> +    @Test
>      public void testErfcMaple() throws Exception {
>          double[][] ref = new double[][]
>                          {{0.1, 4.60172162722971e-01},
> @@ -183,7 +191,7 @@ public class ErfTest extends TestCase {
>          };
>          for (int i = 0; i < 15; i++) {
>              final double result = 0.5*Erf.erfc(ref[i][0]/Math.sqrt(2));
> -            assertEquals(ref[i][1], result, 1E-15);
> +            Assert.assertEquals(ref[i][1], result, 1E-15);
>              TestUtils.assertRelativelyEquals(ref[i][1], result, 1E-13);
>          }
>      }
>
> Modified: 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/GammaTest.java
> URL: 
> http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/GammaTest.java?rev=1083323&r1=1083322&r2=1083323&view=diff
> ==============================================================================
> --- 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/GammaTest.java
>  (original)
> +++ 
> commons/proper/math/trunk/src/test/java/org/apache/commons/math/special/GammaTest.java
>  Sat Mar 19 22:49:59 2011
> @@ -16,30 +16,21 @@
>   */
>  package org.apache.commons.math.special;
>  
> -import org.apache.commons.math.MathException;
>  import org.apache.commons.math.TestUtils;
>  import org.apache.commons.math.util.FastMath;
>  
> -import junit.framework.TestCase;
> +import org.junit.Test;
> +import org.junit.Assert;
>  
>  /**
>   * @version $Revision$ $Date$
>   */
> -public class GammaTest extends TestCase {
> -
> -    public GammaTest(String name) {
> -        super(name);
> -    }
> -
> +public class GammaTest {
>      private void testRegularizedGamma(double expected, double a, double x) {
> -        try {
> -            double actualP = Gamma.regularizedGammaP(a, x);
> -            double actualQ = Gamma.regularizedGammaQ(a, x);
> -            TestUtils.assertEquals(expected, actualP, 10e-15);
> -            TestUtils.assertEquals(actualP, 1.0 - actualQ, 10e-15);
> -        } catch(MathException ex){
> -            fail(ex.getMessage());
> -        }
> +        double actualP = Gamma.regularizedGammaP(a, x);
> +        double actualQ = Gamma.regularizedGammaQ(a, x);
> +        TestUtils.assertEquals(expected, actualP, 10e-15);
> +        TestUtils.assertEquals(actualP, 1.0 - actualQ, 10e-15);
>      }
>  
>      private void testLogGamma(double expected, double x) {
> @@ -47,65 +38,78 @@ public class GammaTest extends TestCase 
>          TestUtils.assertEquals(expected, actual, 10e-15);
>      }
>  
> +    @Test
>      public void testRegularizedGammaNanPositive() {
>          testRegularizedGamma(Double.NaN, Double.NaN, 1.0);
>      }
>  
> +    @Test
>      public void testRegularizedGammaPositiveNan() {
>          testRegularizedGamma(Double.NaN, 1.0, Double.NaN);
>      }
>  
> +    @Test
>      public void testRegularizedGammaNegativePositive() {
>          testRegularizedGamma(Double.NaN, -1.5, 1.0);
>      }
>  
> +    @Test
>      public void testRegularizedGammaPositiveNegative() {
>          testRegularizedGamma(Double.NaN, 1.0, -1.0);
>      }
>  
> +    @Test
>      public void testRegularizedGammaZeroPositive() {
>          testRegularizedGamma(Double.NaN, 0.0, 1.0);
>      }
>  
> +    @Test
>      public void testRegularizedGammaPositiveZero() {
>          testRegularizedGamma(0.0, 1.0, 0.0);
>      }
>  
> +    @Test
>      public void testRegularizedGammaPositivePositive() {
>          testRegularizedGamma(0.632120558828558, 1.0, 1.0);
>      }
>  
> +    @Test
>      public void testLogGammaNan() {
>          testLogGamma(Double.NaN, Double.NaN);
>      }
>  
> +    @Test
>      public void testLogGammaNegative() {
>          testLogGamma(Double.NaN, -1.0);
>      }
>  
> +    @Test
>      public void testLogGammaZero() {
>          testLogGamma(Double.NaN, 0.0);
>      }
>  
> +    @Test
>      public void testLogGammaPositive() {
>          testLogGamma(0.6931471805599457, 3.0);
>      }
>  
> +    @Test
>      public void testDigammaLargeArgs() {
>          double eps = 1e-8;
> -        assertEquals(4.6001618527380874002, Gamma.digamma(100), eps);
> -        assertEquals(3.9019896734278921970, Gamma.digamma(50), eps);
> -        assertEquals(2.9705239922421490509, Gamma.digamma(20), eps);
> -        assertEquals(2.9958363947076465821, Gamma.digamma(20.5), eps);
> -        assertEquals(2.2622143570941481605, Gamma.digamma(10.1), eps);
> -        assertEquals(2.1168588189004379233, Gamma.digamma(8.8), eps);
> -        assertEquals(1.8727843350984671394, Gamma.digamma(7), eps);
> -        assertEquals(0.42278433509846713939, Gamma.digamma(2), eps);
> -        assertEquals(-100.56088545786867450, Gamma.digamma(0.01), eps);
> -        assertEquals(-4.0390398965921882955, Gamma.digamma(-0.8), eps);
> -        assertEquals(4.2003210041401844726, Gamma.digamma(-6.3), eps);
> +        Assert.assertEquals(4.6001618527380874002, Gamma.digamma(100), eps);
> +        Assert.assertEquals(3.9019896734278921970, Gamma.digamma(50), eps);
> +        Assert.assertEquals(2.9705239922421490509, Gamma.digamma(20), eps);
> +        Assert.assertEquals(2.9958363947076465821, Gamma.digamma(20.5), eps);
> +        Assert.assertEquals(2.2622143570941481605, Gamma.digamma(10.1), eps);
> +        Assert.assertEquals(2.1168588189004379233, Gamma.digamma(8.8), eps);
> +        Assert.assertEquals(1.8727843350984671394, Gamma.digamma(7), eps);
> +        Assert.assertEquals(0.42278433509846713939, Gamma.digamma(2), eps);
> +        Assert.assertEquals(-100.56088545786867450, Gamma.digamma(0.01), 
> eps);
> +        Assert.assertEquals(-4.0390398965921882955, Gamma.digamma(-0.8), 
> eps);
> +        Assert.assertEquals(4.2003210041401844726, Gamma.digamma(-6.3), eps);
>      }
>  
> +    @Test
>      public void testDigammaSmallArgs() {
>          // values for negative powers of 10 from 1 to 30 as computed by 
> webMathematica with 20 digits
>          // see functions.wolfram.com
> @@ -120,6 +124,7 @@ public class GammaTest extends TestCase 
>          }
>      }
>  
> +    @Test
>      public void testTrigamma() {
>          double eps = 1e-8;
>          // computed using webMathematica.  For example, to compute 
> trigamma($i) = Polygamma(1, $i), use
> @@ -141,11 +146,11 @@ public class GammaTest extends TestCase 
>                  100, 0.010050166663333571395
>          };
>          for (int i = data.length - 2; i >= 0; i -= 2) {
> -            assertEquals(String.format("trigamma %.0f", data[i]), data[i + 
> 1], Gamma.trigamma(data[i]), eps);
> +            Assert.assertEquals(String.format("trigamma %.0f", data[i]), 
> data[i + 1], Gamma.trigamma(data[i]), eps);
>          }
>      }
>  
>      private void checkRelativeError(String msg, double expected, double 
> actual, double tolerance) {
> -        assertEquals(msg, expected, actual, FastMath.abs(tolerance * 
> actual));
> +        Assert.assertEquals(msg, expected, actual, FastMath.abs(tolerance * 
> actual));
>      }
>  }
>
>
>


---------------------------------------------------------------------
To unsubscribe, e-mail: dev-unsubscr...@commons.apache.org
For additional commands, e-mail: dev-h...@commons.apache.org

Reply via email to