Does the code work without using  TensorRT? Any logs?

On Tue, Sep 16, 2025 at 9:28 PM Sai Shashank <[email protected]>
wrote:

> import apache_beam as beam
> from apache_beam.ml.inference.tensorrt_inference import
> TensorRTEngineHandlerNumPy
> from apache_beam.ml.inference.base import RunInference
>
> #!/usr/bin/env python3
> """
> Apache Beam pipeline for processing PDFs with Triton server and saving
> results to BigQuery.
> This pipeline combines functionality from test_triton_document.py,
> create_bigquery_tables.py,
> and save_to_bigquery.py into a single workflow.
> """
>
> import os
> import sys
> import json
> import uuid
> import argparse
> import logging
> import tempfile
> import datetime
> import requests
> import numpy as np
> import cv2
> from PIL import Image
> import fitz  # PyMuPDF
> from pathlib import Path
> from typing import Dict, List, Tuple, Any, Optional, Iterator
>
> # Apache Beam imports
> import apache_beam as beam
> from apache_beam.options.pipeline_options import PipelineOptions,
> SetupOptions
> from apache_beam.ml.inference.base import RemoteModelHandler,
> PredictionResult
> from apache_beam.ml.inference.utils import _convert_to_result
> from apache_beam.ml.inference.base import RunInference
> from apache_beam.io.gcp.bigquery import WriteToBigQuery
> from apache_beam.io.filesystems import FileSystems
> from apache_beam.io.gcp.gcsio import GcsIO
>
> # Google Cloud imports
> from google.cloud import storage
> from google.cloud import bigquery
>
> # Set up logging
> logging.basicConfig(level=logging.INFO)
> logger = logging.getLogger(__name__)
>
> # DocLayNet classes
> CLASS_ID_TO_NAME = {
>     0: 'Caption',
>     1: 'Footnote',
>     2: 'Formula',
>     3: 'List-item',
>     4: 'Page-footer',
>     5: 'Page-header',
>     6: 'Picture',
>     7: 'Section-header',
>     8: 'Table',
>     9: 'Text',
>     10: 'Title'
> }
> class DownloadPDFFromGCS(beam.DoFn):
>     """Download a PDF from Google Cloud Storage."""
>
>     def __init__(self, temp_dir=None):
>         self.temp_dir = temp_dir or tempfile.gettempdir()
>
>     def process(self, gcs_uri):
>         try:
>             # Parse GCS URI
>             if not gcs_uri.startswith("gs://"):
>                 raise ValueError(f"Invalid GCS URI: {gcs_uri}")
>
>             # Remove gs:// prefix and split into bucket and blob path
>             path_parts = gcs_uri[5:].split("/", 1)
>             bucket_name = path_parts[0]
>             blob_path = path_parts[1]
>
>             # Get filename from blob path
>             filename = os.path.basename(blob_path)
>             local_path = os.path.join(self.temp_dir, filename)
>
>             # Create temp directory if it doesn't exist
>             os.makedirs(self.temp_dir, exist_ok=True)
>
>             try:
>                 # Download using Beam's GcsIO
>                 with FileSystems.open(gcs_uri, 'rb') as gcs_file:
>                     with open(local_path, 'wb') as local_file:
>                         local_file.write(gcs_file.read())
>
>                 logger.info(f"Downloaded {gcs_uri} to {local_path}")
>
>                 # Return a dictionary with the local path and original URI
>                 yield {
>                     'local_path': local_path,
>                     'gcs_uri': gcs_uri,
>                     'filename': filename
>                 }
>             except Exception as e:
>                 logger.error(f"Error reading from GCS: {str(e)}")
>                 # Try alternative download method
>                 logger.info(f"Trying alternative download method for
> {gcs_uri}")
>
>                 # For testing with local files
>                 if os.path.exists(gcs_uri.replace("gs://", "")):
>                     local_path = gcs_uri.replace("gs://", "")
>                     logger.info(f"Using local file: {local_path}")
>                     yield {
>                         'local_path': local_path,
>                         'gcs_uri': gcs_uri,
>                         'filename': os.path.basename(local_path)
>                     }
>                 else:
>                     # Try using gsutil command
>                     import subprocess
>                     try:
>                         subprocess.run(["gsutil", "cp", gcs_uri,
> local_path], check=True)
>                         logger.info(f"Downloaded {gcs_uri} to
> {local_path} using gsutil")
>                         yield {
>                             'local_path': local_path,
>                             'gcs_uri': gcs_uri,
>                             'filename': filename
>                         }
>                     except Exception as e2:
>                         logger.error(f"Failed to download using gsutil:
> {str(e2)}")
>
>         except Exception as e:
>             logger.error(f"Error downloading {gcs_uri}: {str(e)}")
> class LoadPDFPages(beam.DoFn):
>     """Load PDF pages as images."""
>
>     def __init__(self, dpi=200):
>         self.dpi = dpi
>
>     def process(self, element):
>         doc = None
>         try:
>             # Make sure we have all required fields
>             if not isinstance(element, dict):
>                 logger.error(f"Expected dictionary, got {type(element)}")
>                 return
>
>             if 'local_path' not in element:
>                 logger.error("Missing 'local_path' in element")
>                 return
>
>             local_path = element['local_path']
>             gcs_uri = element.get('gcs_uri', '')
>
>             # Extract filename from local_path if not provided
>             filename = element.get('filename',
> os.path.basename(local_path))
>
>             logger.info(f"Loading PDF: {local_path}, filename:
> {filename}")
>
>             # Check if file exists and is accessible
>             if not os.path.exists(local_path):
>                 logger.error(f"File not found: {local_path}")
>                 return
>
>             if not os.access(local_path, os.R_OK):
>                 logger.error(f"File not readable: {local_path}")
>                 return
>
>             # Open the PDF
>             try:
>                 doc = fitz.open(local_path)
>                 if doc.is_closed:
>                     logger.error(f"Failed to open PDF: {local_path}")
>                     return
>             except Exception as e:
>                 logger.error(f"Error opening PDF {local_path}: {str(e)}")
>                 return
>
>             # Process each page
>             page_count = len(doc)
>             logger.info(f"Processing {page_count} pages from
> {local_path}")
>
>             for i in range(page_count):
>                 try:
>                     if doc.is_closed:
>                         logger.error(f"Document was closed unexpectedly
> while processing page {i}")
>                         break
>
>                     page = doc[i]
>                     if page is None:
>                         logger.error(f"Failed to get page {i} from
> document")
>                         continue
>
>                     # Use a higher resolution for better quality
>                     scale = self.dpi / 72.0
>                     mat = fitz.Matrix(scale, scale)
>
>                     try:
>                         pix = page.get_pixmap(matrix=mat, alpha=False)
>                     except Exception as e:
>                         logger.error(f"Error getting pixmap for page {i}:
> {str(e)}")
>                         continue
>
>                     # Check pixmap dimensions
>                     if pix.height <= 0 or pix.width <= 0 or pix.n <= 0:
>                         logger.error(f"Invalid pixmap dimensions:
> {pix.width}x{pix.height}x{pix.n}")
>                         continue
>
>                     # Convert to numpy array
>                     try:
>                         arr = np.frombuffer(pix.samples,
> dtype=np.uint8).reshape(pix.height, pix.width, pix.n)
>                     except Exception as e:
>                         logger.error(f"Error converting pixmap to numpy
> array: {str(e)}")
>                         continue
>
>                     # Convert BGR to RGB if needed
>                     if pix.n == 3:  # RGB
>                         try:
>                             arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
>                         except Exception as e:
>                             logger.error(f"Error converting BGR to RGB:
> {str(e)}")
>                             continue
>
>                     # Store original size for later use
>                     original_size = (arr.shape[0], arr.shape[1])
>
>                     # Create page info
>                     page_info = {
>                         'page_num': i,
>                         'image': arr,
>                         'original_size': original_size,
>                         'local_path': local_path,
>                         'gcs_uri': gcs_uri,
>                         'filename': filename
>                     }
>
>                     # Use document ID and page number as key
>                     doc_id = os.path.splitext(filename)[0]
>                     key = f"{doc_id}_{i}"
>
>                     yield (key, page_info)
>                 except Exception as e:
>                     import traceback
>                     logger.error(f"Error processing page {i}: {str(e)}")
>                     logger.error(traceback.format_exc())
>
>             logger.info(f"Loaded {len(doc)} pages from {local_path}")
>
>         except Exception as e:
>             import traceback
>             logger.error(f"Error loading PDF: {str(e)}")
>             logger.error(traceback.format_exc())
>         finally:
>             # Make sure to close the document only if it was successfully
> opened
>             if doc is not None:
>                 try:
>                     if not doc.is_closed:
>                         doc.close()
>                 except Exception as e:
>                     logger.debug(f"Error closing document: {str(e)}")
>
> class PreprocessImage(beam.DoFn):
>     """Preprocess image for Triton server."""
>
>     def __init__(self, size=1024):
>         self.size = size
>
>     def letterbox(self, img, new_shape=1024, color=(114,114,114)):
>         """Resize and pad image to target size."""
>         h, w = img.shape[:2]
>         r = min(new_shape / h, new_shape / w)
>         nh, nw = int(round(h * r)), int(round(w * r))
>         pad_h, pad_w = new_shape - nh, new_shape - nw
>         top = pad_h // 2
>         bottom = pad_h - top
>         left = pad_w // 2
>         right = pad_w - left
>         img = cv2.resize(img, (nw, nh), interpolation=cv2.INTER_LINEAR)
>         img = cv2.copyMakeBorder(img, top, bottom, left, right,
> cv2.BORDER_CONSTANT, value=color)
>         return img, r, left, top
>
>     def process(self, element):
>         try:
>             if not isinstance(element, tuple) or len(element) != 2:
>                 logger.error(f"Expected (key, value) tuple, got
> {type(element)}")
>                 return
>
>             key, page_info = element
>
>             if not isinstance(page_info, dict):
>                 logger.error(f"Expected dictionary for page_info, got
> {type(page_info)}")
>                 return
>
>             if 'image' not in page_info:
>                 logger.error("Missing 'image' in page_info")
>                 return
>
>             # Create a new dictionary to avoid modifying the input
>             new_page_info = dict(page_info)
>
>             # Apply letterbox resize
>             img = new_page_info['image']
>             lb, r, left, top = self.letterbox(img, new_shape=self.size)
>
>             # Convert to float32 and normalize to [0,1]
>             x = lb.astype(np.float32) / 255.0
>
>             # Convert to CHW format
>             x = np.transpose(x, (2, 0, 1))
>
>             # Add batch dimension
>             batched_img = np.expand_dims(x, axis=0)
>
>             # Update page info
>             new_page_info['preprocessed_image'] = batched_img
>             new_page_info['letterbox_info'] = (r, left, top)
>
>             yield (key, new_page_info)
>
>         except Exception as e:
>             import traceback
>             logger.error(f"Error preprocessing image: {str(e)}")
>             logger.error(traceback.format_exc())
>
>
>
> class ExtractBoxes(beam.DoFn):
>     """Extract bounding boxes from Triton response."""
>
>     def __init__(self, conf_th=0.25, iou_th=0.7, model_size=1024):
>         self.conf_th = conf_th
>         self.iou_th = iou_th
>         self.model_size = model_size
>
>     def _nms(self, boxes, scores, iou_th=0.7):
>         """Non-Maximum Suppression"""
>         if len(boxes) == 0:
>             return []
>
>         boxes = boxes.astype(np.float32)
>         x1, y1, x2, y2 = boxes.T
>         areas = (x2 - x1) * (y2 - y1)
>         order = scores.argsort()[::-1]
>
>         keep = []
>         while order.size > 0:
>             i = order[0]
>             keep.append(i)
>
>             xx1 = np.maximum(x1[i], x1[order[1:]])
>             yy1 = np.maximum(y1[i], y1[order[1:]])
>             xx2 = np.minimum(x2[i], x2[order[1:]])
>             yy2 = np.minimum(y2[i], y2[order[1:]])
>
>             w = np.maximum(0.0, xx2 - xx1)
>             h = np.maximum(0.0, yy2 - yy1)
>             inter = w * h
>
>             iou = inter / (areas[i] + areas[order[1:]] - inter + 1e-9)
>             inds = np.where(iou <= iou_th)[0]
>             order = order[inds + 1]
>
>         return keep
>
>     def process(self, page_info):
>         try:
>             triton_response = page_info['triton_response']
>             original_size = page_info['original_size']
>             r, left, top = page_info['letterbox_info']
>
>             if "outputs" not in triton_response or not
> triton_response["outputs"]:
>                 logger.error("Invalid response from Triton server")
>                 return []
>
>             out_meta = triton_response["outputs"][0]
>             shape = out_meta["shape"]
>             data = np.array(out_meta["data"],
> dtype=np.float32).reshape(shape)
>
>             logger.info(f"Output shape: {shape}")
>
>             # For YOLO output [B, C, P] where C is channels (box coords +
> objectness + classes)
>             B, C, P = shape
>
>             # Assuming 4 box coordinates + class probabilities (no
> objectness)
>             has_objectness = False
>             num_classes = C - 5 if has_objectness else C - 4
>
>             # Extract data
>             xywh = data[:, 0:4, :]
>             if has_objectness:
>                 obj = data[:, 4:5, :]
>                 cls = data[:, 5:5 + num_classes, :]
>             else:
>                 obj = None
>                 cls = data[:, 4:4 + num_classes, :]
>
>             # Process batch item (we only have one)
>             b = 0
>             h, w = original_size
>
>             xywh_b = xywh[b].T  # (P,4)
>             if obj is not None:
>                 obj_b = obj[b].T.squeeze(1)  # (P,)
>             else:
>                 obj_b = np.ones((P,), dtype=np.float32)
>             cls_b = cls[b].T  # (P,nc)
>
>             # Get scores and labels
>             scores_all = (obj_b[:, None] * cls_b) if obj is not None else
> cls_b
>             labels = scores_all.argmax(axis=1)
>             scores = scores_all.max(axis=1)
>
>             # Filter by confidence threshold
>             keep = scores >= self.conf_th
>             if not np.any(keep):
>                 logger.info(f"No detections above threshold
> {self.conf_th}")
>                 return []
>
>             xywh_k = xywh_b[keep]
>             scores_k = scores[keep]
>             labels_k = labels[keep]
>
>             # xywh -> xyxy in model space
>             cx, cy, ww, hh = xywh_k.T
>             xyxy_model = np.stack([cx - ww / 2, cy - hh / 2, cx + ww / 2,
> cy + hh / 2], axis=1)
>
>             # Apply NMS per class
>             final_boxes = []
>             final_scores = []
>             final_labels = []
>
>             for c in np.unique(labels_k):
>                 idxs = np.where(labels_k == c)[0]
>                 if idxs.size == 0:
>                     continue
>                 keep_idx = self._nms(xyxy_model[idxs], scores_k[idxs],
> iou_th=self.iou_th)
>                 final_boxes.append(xyxy_model[idxs][keep_idx])
>                 final_scores.append(scores_k[idxs][keep_idx])
>                 final_labels.append(np.full(len(keep_idx), c, dtype=int))
>
>             if not final_boxes:
>                 logger.info("No detections after NMS")
>                 return []
>
>             xyxy_model = np.vstack(final_boxes)
>             scores_k = np.concatenate(final_scores)
>             labels_k = np.concatenate(final_labels)
>
>             # Map boxes from model space to original image space
>             xyxy_orig = xyxy_model.copy()
>
>             # Remove padding
>             xyxy_orig[:, [0, 2]] -= left
>             xyxy_orig[:, [1, 3]] -= top
>
>             # Scale back to original size
>             xyxy_orig /= r
>
>             # Clip to image boundaries
>             xyxy_orig[:, 0::2] = np.clip(xyxy_orig[:, 0::2], 0, w - 1)
>             xyxy_orig[:, 1::2] = np.clip(xyxy_orig[:, 1::2], 0, h - 1)
>
>             # Format as requested: x_min, y_min, x_max, y_max, class,
> probability
>             boxes = []
>             for (x1, y1, x2, y2), label, score in zip(xyxy_orig, labels_k,
> scores_k):
>                 class_name = CLASS_ID_TO_NAME.get(int(label))
>                 box_info = {
>                     "page": page_info['page_num'],
>                     "x_min": float(x1),
>                     "y_min": float(y1),
>                     "x_max": float(x2),
>                     "y_max": float(y2),
>                     "class": int(label),
>                     "class_name": class_name,
>                     "probability": float(score),
>                     "filename": page_info['filename'],
>                     "local_path": page_info['local_path'],
>                     "gcs_uri": page_info['gcs_uri']
>                 }
>                 boxes.append(box_info)
>
>             logger.info(f"Extracted {len(boxes)} boxes from page
> {page_info['page_num']}")
>
>             return boxes
>
>         except Exception as e:
>             logger.error(f"Error extracting boxes: {str(e)}")
>             return []
>
> class PrepareForBigQuery(beam.DoFn):
>     """Prepare data for BigQuery insertion."""
>
>     def process(self, box_info):
>         try:
>             # Generate UUIDs for primary keys
>             v_note_id = str(uuid.uuid4())
>             page_ocr_id = str(uuid.uuid4())
>             class_prediction_id = str(uuid.uuid4())
>
>             # Create timestamp
>             processing_time = datetime.datetime.now().strftime("%Y-%m-%d
> %H:%M:%S")
>
>             # Create ocr_results row
>             ocr_results_row = {
>                 "v_note_id": v_note_id,
>                 "filename": box_info['filename'],
>                 "file_path": box_info['gcs_uri'],
>                 "processing_time": processing_time,
>                 "file_type": "pdf"
>             }
>
>             # Create page_ocr row
>             page_ocr_row = {
>                 "page_ocr_id": page_ocr_id,
>                 "v_note_id": v_note_id,
>                 "page_number": box_info['page']
>             }
>
>             # Create class_prediction row
>             class_prediction_row = {
>                 "class_prediction_id": class_prediction_id,
>                 "page_ocr_id": page_ocr_id,
>                 "xmin": box_info['x_min'],
>                 "ymin": box_info['y_min'],
>                 "xmax": box_info['x_max'],
>                 "ymax": box_info['y_max'],
>                 "class": box_info['class_name'] if box_info['class_name']
> else str(box_info['class']),
>                 "confidence": box_info['probability']
>             }
>
>             # Return all three rows with table names
>             return [
>                 ('ocr_results', ocr_results_row),
>                 ('page_ocr', page_ocr_row),
>                 ('class_prediction', class_prediction_row)
>             ]
>
>         except Exception as e:
>             logger.error(f"Error preparing for BigQuery: {str(e)}")
>             return []
>
> model_handler = TensorRTEngineHandlerNumPy(
>   min_batch_size=1,
>   max_batch_size=1,
>   engine_path="gs://temp/yolov11l-doclaynet.engine",
> )
>
>
> with beam.Pipeline(options=options) as pipeline:
>
>         # Create PCollection from input URIs
>         pdf_uris = (
>             pipeline
>             | "Create URIs" >> beam.Create(["tmp.pdf"])
>         )
>
>         # Download PDFs
>         local_pdfs = (
>             pdf_uris
>             | "Download PDFs" >> beam.ParDo(DownloadPDFFromGCS())
>         )
>
>          # Load PDF pages
>         pdf_pages = (
>             local_pdfs
>             | "Load PDF Pages" >> beam.ParDo(LoadPDFPages())
>             #| "Flatten Pages" >> beam.FlatMap(lambda x: x)
>         )
>
>         # Preprocess images
>         preprocessed_pages = (
>             pdf_pages
>             | "Preprocess Images" >> beam.ParDo(PreprocessImage())
>         )
>         inference_results = (
>             preprocessed_pages
>             | "Run Inference" >> RunInference(model_handler=model_handler)
>         )
>
> On Tue, 16 Sept 2025 at 21:23, XQ Hu <[email protected]> wrote:
>
>> Can you share your commands and outputs?
>>
>> On Tue, Sep 16, 2025 at 9:02 PM Sai Shashank <[email protected]>
>> wrote:
>>
>>> Okay I have changed the docker image but  to now to RUN the python
>>> command but it is still halting without are error or warnings or errors
>>>
>>> On Tue, 16 Sept 2025 at 17:38, XQ Hu via dev <[email protected]>
>>> wrote:
>>>
>>>> The CMD is not necessary as it will be overridden by the ENTRYPOINT
>>>> just like your comment.
>>>>
>>>> If you ssh to your Docker container like `docker run --rm -it
>>>> --entrypoint=/bin/bash $CUSTOM_CONTAINER_IMAGE`, can you run python and
>>>> some Beam pipelines with a direct runner in the container? This can help
>>>> test the environment works fine.
>>>>
>>>> I have one old Dockerfile that used to work with the old Beam:
>>>> https://github.com/google/dataflow-ml-starter/blob/main/tensor_rt.Dockerfile
>>>> .
>>>>
>>>> On Tue, Sep 16, 2025 at 4:56 PM Sai Shashank <[email protected]>
>>>> wrote:
>>>>
>>>>>
>>>>>
>>>>> ---------- Forwarded message ---------
>>>>> From: Sai Shashank <[email protected]>
>>>>> Date: Tue, Sep 16, 2025 at 4:27 PM
>>>>> Subject: TensorRT inference not starting
>>>>> To: <[email protected]>
>>>>>
>>>>>
>>>>> Hey Everyone,
>>>>>                          I was trying to use tensorRT within the
>>>>> apache beam on dataflow but somehow , dataflow didn't start like it did 
>>>>> not
>>>>> even give me Worker logs. Below is the docker file that , use to create a
>>>>> custom  image, at first I thought it is the version mismatched but usually
>>>>> it gives me a harness error .
>>>>>
>>>>> ARG BUILD_IMAGE=nvcr.io/nvidia/tensorrt:25.08-py3
>>>>> FROM ${BUILD_IMAGE}
>>>>> ENV PATH="/usr/src/tensorrt/bin:${PATH}"
>>>>>
>>>>> WORKDIR /workspace
>>>>>
>>>>> RUN apt-get update -y && apt-get install -y python3-venv
>>>>> RUN pip install --no-cache-dir apache-beam[gcp]==2.67.0
>>>>>
>>>>> COPY --from=apache/beam_python3.10_sdk:2.67.0 /opt/apache/beam
>>>>> /opt/apache/beam
>>>>>
>>>>> # Install additional dependencies
>>>>> RUN pip install --upgrade pip \
>>>>>     && pip install torch \
>>>>>     && pip install torchvision \
>>>>>     && pip install pillow>=8.0.0 \
>>>>>     && pip install transformers>=4.18.0 \
>>>>>     && pip install cuda-python \
>>>>>     && pip install opencv-python==4.7.0.72 \
>>>>>     && pip install PyMuPDF==1.22.5 \
>>>>>     && pip install requests==2.31.0
>>>>>
>>>>> # Set the default command to run the inference script
>>>>> # This will be overridden by the Apache Beam boot script
>>>>> CMD ["python", "/workspace/inference.py"]
>>>>>
>>>>> # Use the Apache Beam boot script as the entrypoint
>>>>> ENTRYPOINT ["/opt/apache/beam/boot"]
>>>>>
>>>>>
>>>>>

Reply via email to