On Sun, Jul 19, 2020 at 7:33 PM Neal Richardson
<neal.p.richard...@gmail.com> wrote:
>
> It sounds like you may have identified a pyarrow bug, which sounds not
> good, though I don't know enough about the broader context to know whether
> this is (1) worse than 0.17 or (2) release blocking. I defer to y'all who
> know better.
>
> If there are quirks in how Spark handles timezone-naive timestamps,
> shouldn't the fix/workaround go in pyspark, not pyarrow? For what it's
> worth, I dealt with similar Spark timezone issues in R recently:
> https://github.com/sparklyr/sparklyr/issues/2439 I handled with it (in
> sparklyr, not the arrow R package) by always setting a timezone when
> sending data to Spark. Not ideal but it made the numbers "right".

Since people are running this code in production we need to be careful
about disrupting them. Unfortunately I'm at the limit of how much time
I can spend on this, but releasing with ARROW-9223 as is (without
being partially or fully reverted) makes me deeply uncomfortable. So I
hope the matter can be resolved.

> Neal
>
>
> On Sun, Jul 19, 2020 at 5:13 PM Wes McKinney <wesmck...@gmail.com> wrote:
>
> > Honestly I think reverting is the best option. This change evidently
> > needs more time to "season" and perhaps this is motivation to enhance
> > test coverage in a number of places.
> >
> > On Sun, Jul 19, 2020 at 7:11 PM Wes McKinney <wesmck...@gmail.com> wrote:
> > >
> > > I am OK with any solution that doesn't delay the production of the
> > > next RC by more than 24 hours
> > >
> > > On Sun, Jul 19, 2020 at 7:08 PM Micah Kornfield <emkornfi...@gmail.com>
> > wrote:
> > > >
> > > > If I read the example right it looks like constructing from python
> > types
> > > > isn't keeping timezones into in place?  I can try make a patch that
> > fixes
> > > > that tonight or would the preference be to revert my patch (note I
> > think
> > > > another bug with a prior bug was fixed in my PR as well)
> > > >
> > > > -Micah
> > > >
> > > > On Sunday, July 19, 2020, Wes McKinney <wesmck...@gmail.com> wrote:
> > > >
> > > > > I think I see the problem now:
> > > > >
> > > > > In [40]: parr
> > > > > Out[40]:
> > > > > 0           {'f0': 1969-12-31 16:00:00-08:00}
> > > > > 1    {'f0': 1969-12-31 16:00:00.000001-08:00}
> > > > > 2    {'f0': 1969-12-31 16:00:00.000002-08:00}
> > > > > dtype: object
> > > > >
> > > > > In [41]: parr[0]['f0']
> > > > > Out[41]: datetime.datetime(1969, 12, 31, 16, 0, tzinfo=<DstTzInfo
> > > > > 'America/Los_Angeles' PST-1 day, 16:00:00 STD>)
> > > > >
> > > > > In [42]: pa.array(parr)
> > > > > Out[42]:
> > > > > <pyarrow.lib.StructArray object at 0x7f0893706a60>
> > > > > -- is_valid: all not null
> > > > > -- child 0 type: timestamp[us]
> > > > >   [
> > > > >     1969-12-31 16:00:00.000000,
> > > > >     1969-12-31 16:00:00.000001,
> > > > >     1969-12-31 16:00:00.000002
> > > > >   ]
> > > > >
> > > > > In [43]: pa.array(parr).field(0).type
> > > > > Out[43]: TimestampType(timestamp[us])
> > > > >
> > > > > On 0.17.1
> > > > >
> > > > > In [8]: arr = pa.array([0, 1, 2], type=pa.timestamp('us',
> > > > > 'America/Los_Angeles'))
> > > > >
> > > > > In [9]: arr
> > > > > Out[9]:
> > > > > <pyarrow.lib.TimestampArray object at 0x7f9dede69d00>
> > > > > [
> > > > >   1970-01-01 00:00:00.000000,
> > > > >   1970-01-01 00:00:00.000001,
> > > > >   1970-01-01 00:00:00.000002
> > > > > ]
> > > > >
> > > > > In [10]: struct_arr = pa.StructArray.from_arrays([arr], names=['f0'])
> > > > >
> > > > > In [11]: struct_arr
> > > > > Out[11]:
> > > > > <pyarrow.lib.StructArray object at 0x7f9ded0016e0>
> > > > > -- is_valid: all not null
> > > > > -- child 0 type: timestamp[us, tz=America/Los_Angeles]
> > > > >   [
> > > > >     1970-01-01 00:00:00.000000,
> > > > >     1970-01-01 00:00:00.000001,
> > > > >     1970-01-01 00:00:00.000002
> > > > >   ]
> > > > >
> > > > > In [12]: struct_arr.to_pandas()
> > > > > Out[12]:
> > > > > 0           {'f0': 1970-01-01 00:00:00}
> > > > > 1    {'f0': 1970-01-01 00:00:00.000001}
> > > > > 2    {'f0': 1970-01-01 00:00:00.000002}
> > > > > dtype: object
> > > > >
> > > > > In [13]: pa.array(struct_arr.to_pandas())
> > > > > Out[13]:
> > > > > <pyarrow.lib.StructArray object at 0x7f9ded003210>
> > > > > -- is_valid: all not null
> > > > > -- child 0 type: timestamp[us]
> > > > >   [
> > > > >     1970-01-01 00:00:00.000000,
> > > > >     1970-01-01 00:00:00.000001,
> > > > >     1970-01-01 00:00:00.000002
> > > > >   ]
> > > > >
> > > > > In [14]: pa.array(struct_arr.to_pandas()).type
> > > > > Out[14]: StructType(struct<f0: timestamp[us]>)
> > > > >
> > > > > So while the time zone is getting stripped in both cases, the failure
> > > > > to round trip is a problem. If we are going to attach the time zone
> > in
> > > > > to_pandas() then we need to respect it when going the other way.
> > > > >
> > > > > This looks like a regression to me and so I'm inclined to revise my
> > > > > vote on the release to -0/-1
> > > > >
> > > > > On Sun, Jul 19, 2020 at 6:46 PM Wes McKinney <wesmck...@gmail.com>
> > wrote:
> > > > > >
> > > > > > Ah I forgot that this is a "feature" of nanosecond timestamps
> > > > > >
> > > > > > In [21]: arr = pa.array([0, 1, 2], type=pa.timestamp('us',
> > > > > > 'America/Los_Angeles'))
> > > > > >
> > > > > > In [22]: struct_arr = pa.StructArray.from_arrays([arr],
> > names=['f0'])
> > > > > >
> > > > > > In [23]: struct_arr.to_pandas()
> > > > > > Out[23]:
> > > > > > 0           {'f0': 1969-12-31 16:00:00-08:00}
> > > > > > 1    {'f0': 1969-12-31 16:00:00.000001-08:00}
> > > > > > 2    {'f0': 1969-12-31 16:00:00.000002-08:00}
> > > > > > dtype: object
> > > > > >
> > > > > > So this is working as intended, such as it is
> > > > > >
> > > > > > On Sun, Jul 19, 2020 at 6:40 PM Wes McKinney <wesmck...@gmail.com>
> > > > > wrote:
> > > > > > >
> > > > > > > There seems to be other broken StructArray stuff
> > > > > > >
> > > > > > > In [14]: arr = pa.array([0, 1, 2], type=pa.timestamp('ns',
> > > > > > > 'America/Los_Angeles'))
> > > > > > >
> > > > > > > In [15]: struct_arr = pa.StructArray.from_arrays([arr],
> > names=['f0'])
> > > > > > >
> > > > > > > In [16]: struct_arr
> > > > > > > Out[16]:
> > > > > > > <pyarrow.lib.StructArray object at 0x7f089370f590>
> > > > > > > -- is_valid: all not null
> > > > > > > -- child 0 type: timestamp[ns, tz=America/Los_Angeles]
> > > > > > >   [
> > > > > > >     1970-01-01 00:00:00.000000000,
> > > > > > >     1970-01-01 00:00:00.000000001,
> > > > > > >     1970-01-01 00:00:00.000000002
> > > > > > >   ]
> > > > > > >
> > > > > > > In [17]: struct_arr.to_pandas()
> > > > > > > Out[17]:
> > > > > > > 0    {'f0': 0}
> > > > > > > 1    {'f0': 1}
> > > > > > > 2    {'f0': 2}
> > > > > > > dtype: object
> > > > > > >
> > > > > > > All in all it appears that this part of the project needs some
> > TLC
> > > > > > >
> > > > > > > On Sun, Jul 19, 2020 at 6:16 PM Wes McKinney <
> > wesmck...@gmail.com>
> > > > > wrote:
> > > > > > > >
> > > > > > > > Well, the problem is that time zones are really finicky
> > comparing
> > > > > > > > Spark (which uses a localtime interpretation of timestamps
> > without
> > > > > > > > time zone) and Arrow (which has naive timestamps -- a concept
> > similar
> > > > > > > > but different from the SQL concept TIMESTAMP WITHOUT TIME ZONE
> > -- and
> > > > > > > > tz-aware timestamps). So somewhere there is a time zone being
> > > > > stripped
> > > > > > > > or applied/localized which may result in the transferred data
> > to/from
> > > > > > > > Spark being shifted by the time zone offset. I think it's
> > important
> > > > > > > > that we determine what the problem is -- if it's a problem
> > that has
> > > > > to
> > > > > > > > be fixed in Arrow (and it's not clear to me that it is) it's
> > worth
> > > > > > > > spending some time to understand what's going on to avoid the
> > > > > > > > possibility of patch release on account of this.
> > > > > > > >
> > > > > > > > On Sun, Jul 19, 2020 at 6:12 PM Neal Richardson
> > > > > > > > <neal.p.richard...@gmail.com> wrote:
> > > > > > > > >
> > > > > > > > > If it’s a display problem, should it block the release?
> > > > > > > > >
> > > > > > > > > Sent from my iPhone
> > > > > > > > >
> > > > > > > > > > On Jul 19, 2020, at 3:57 PM, Wes McKinney <
> > wesmck...@gmail.com>
> > > > > wrote:
> > > > > > > > > >
> > > > > > > > > > I opened https://issues.apache.org/jira/browse/ARROW-9525
> > > > > about the
> > > > > > > > > > display problem. My guess is that there are other problems
> > > > > lurking
> > > > > > > > > > here
> > > > > > > > > >
> > > > > > > > > >> On Sun, Jul 19, 2020 at 5:54 PM Wes McKinney <
> > > > > wesmck...@gmail.com> wrote:
> > > > > > > > > >>
> > > > > > > > > >> hi Bryan,
> > > > > > > > > >>
> > > > > > > > > >> This is a display bug
> > > > > > > > > >>
> > > > > > > > > >> In [6]: arr = pa.array([0, 1, 2], type=pa.timestamp('ns',
> > > > > > > > > >> 'America/Los_Angeles'))
> > > > > > > > > >>
> > > > > > > > > >> In [7]: arr.view('int64')
> > > > > > > > > >> Out[7]:
> > > > > > > > > >> <pyarrow.lib.Int64Array object at 0x7fd1b8aaef30>
> > > > > > > > > >> [
> > > > > > > > > >>  0,
> > > > > > > > > >>  1,
> > > > > > > > > >>  2
> > > > > > > > > >> ]
> > > > > > > > > >>
> > > > > > > > > >> In [8]: arr
> > > > > > > > > >> Out[8]:
> > > > > > > > > >> <pyarrow.lib.TimestampArray object at 0x7fd1b8aae6e0>
> > > > > > > > > >> [
> > > > > > > > > >>  1970-01-01 00:00:00.000000000,
> > > > > > > > > >>  1970-01-01 00:00:00.000000001,
> > > > > > > > > >>  1970-01-01 00:00:00.000000002
> > > > > > > > > >> ]
> > > > > > > > > >>
> > > > > > > > > >> In [9]: arr.to_pandas()
> > > > > > > > > >> Out[9]:
> > > > > > > > > >> 0             1969-12-31 16:00:00-08:00
> > > > > > > > > >> 1   1969-12-31 16:00:00.000000001-08:00
> > > > > > > > > >> 2   1969-12-31 16:00:00.000000002-08:00
> > > > > > > > > >> dtype: datetime64[ns, America/Los_Angeles]
> > > > > > > > > >>
> > > > > > > > > >> the repr of TimestampArray doesn't take into account the
> > > > > timezone
> > > > > > > > > >>
> > > > > > > > > >> In [10]: arr[0]
> > > > > > > > > >> Out[10]: <pyarrow.TimestampScalar: Timestamp('1969-12-31
> > > > > > > > > >> 16:00:00-0800', tz='America/Los_Angeles')>
> > > > > > > > > >>
> > > > > > > > > >> So if it's incorrect, the problem is happening somewhere
> > before
> > > > > or
> > > > > > > > > >> while the StructArray is being created. If I had to guess
> > it's
> > > > > caused
> > > > > > > > > >> by the tzinfo of the datetime.datetime values not being
> > handled
> > > > > in the
> > > > > > > > > >> way that they were before
> > > > > > > > > >>
> > > > > > > > > >>> On Sun, Jul 19, 2020 at 5:19 PM Wes McKinney <
> > > > > wesmck...@gmail.com> wrote:
> > > > > > > > > >>>
> > > > > > > > > >>> Well this is not good and pretty disappointing given
> > that we
> > > > > had nearly a month to sort through the implications of Micah’s
> > patch. We
> > > > > should try to resolve this ASAP
> > > > > > > > > >>>
> > > > > > > > > >>> On Sun, Jul 19, 2020 at 5:10 PM Bryan Cutler <
> > > > > cutl...@gmail.com> wrote:
> > > > > > > > > >>>>
> > > > > > > > > >>>> +0 (non-binding)
> > > > > > > > > >>>>
> > > > > > > > > >>>> I ran verification script for binaries and then source,
> > as
> > > > > below, and both
> > > > > > > > > >>>> look good
> > > > > > > > > >>>> ARROW_TMPDIR=/tmp/arrow-test TEST_DEFAULT=0
> > TEST_SOURCE=1
> > > > > TEST_CPP=1
> > > > > > > > > >>>> TEST_PYTHON=1 TEST_JAVA=1 TEST_INTEGRATION_CPP=1
> > > > > TEST_INTEGRATION_JAVA=1
> > > > > > > > > >>>> dev/release/verify-release-candidate.sh source 1.0.0 1
> > > > > > > > > >>>>
> > > > > > > > > >>>> I tried to patch Spark locally to verify the recent
> > change in
> > > > > nested
> > > > > > > > > >>>> timestamps and was not able to get things working quite
> > > > > right, but I'm not
> > > > > > > > > >>>> sure if the problem is in Spark, Arrow or my patch -
> > hence my
> > > > > vote of +0.
> > > > > > > > > >>>>
> > > > > > > > > >>>> Here is what I'm seeing
> > > > > > > > > >>>>
> > > > > > > > > >>>> ```
> > > > > > > > > >>>> (Input as datetime)
> > > > > > > > > >>>> datetime.datetime(2018, 3, 10, 0, 0)
> > > > > > > > > >>>> datetime.datetime(2018, 3, 15, 0, 0)
> > > > > > > > > >>>>
> > > > > > > > > >>>> (Struct Array)
> > > > > > > > > >>>> -- is_valid: all not null
> > > > > > > > > >>>> -- child 0 type: timestamp[us, tz=America/Los_Angeles]
> > > > > > > > > >>>>  [
> > > > > > > > > >>>>    2018-03-10 00:00:00.000000,
> > > > > > > > > >>>>    2018-03-10 00:00:00.000000
> > > > > > > > > >>>>  ]
> > > > > > > > > >>>> -- child 1 type: timestamp[us, tz=America/Los_Angeles]
> > > > > > > > > >>>>  [
> > > > > > > > > >>>>    2018-03-15 00:00:00.000000,
> > > > > > > > > >>>>    2018-03-15 00:00:00.000000
> > > > > > > > > >>>>  ]
> > > > > > > > > >>>>
> > > > > > > > > >>>> (Flattened Arrays)
> > > > > > > > > >>>> types [TimestampType(timestamp[us,
> > tz=America/Los_Angeles]),
> > > > > > > > > >>>> TimestampType(timestamp[us, tz=America/Los_Angeles])]
> > > > > > > > > >>>> [<pyarrow.lib.TimestampArray object at 0x7ffbbd88f520>
> > > > > > > > > >>>> [
> > > > > > > > > >>>>  2018-03-10 00:00:00.000000,
> > > > > > > > > >>>>  2018-03-10 00:00:00.000000
> > > > > > > > > >>>> ], <pyarrow.lib.TimestampArray object at 0x7ffba958be50>
> > > > > > > > > >>>> [
> > > > > > > > > >>>>  2018-03-15 00:00:00.000000,
> > > > > > > > > >>>>  2018-03-15 00:00:00.000000
> > > > > > > > > >>>> ]]
> > > > > > > > > >>>>
> > > > > > > > > >>>> (Pandas Conversion)
> > > > > > > > > >>>> [
> > > > > > > > > >>>> 0   2018-03-09 16:00:00-08:00
> > > > > > > > > >>>> 1   2018-03-09 16:00:00-08:00
> > > > > > > > > >>>> dtype: datetime64[ns, America/Los_Angeles],
> > > > > > > > > >>>>
> > > > > > > > > >>>> 0   2018-03-14 17:00:00-07:00
> > > > > > > > > >>>> 1   2018-03-14 17:00:00-07:00
> > > > > > > > > >>>> dtype: datetime64[ns, America/Los_Angeles]]
> > > > > > > > > >>>> ```
> > > > > > > > > >>>>
> > > > > > > > > >>>> Based on output of existing a correct timestamp udf, it
> > looks
> > > > > like the
> > > > > > > > > >>>> pyarrow Struct Array values are wrong and that's carried
> > > > > through the
> > > > > > > > > >>>> flattened arrays, causing the Pandas values to have a
> > > > > negative offset.
> > > > > > > > > >>>>
> > > > > > > > > >>>> Here is output from a working udf with timestamp, the
> > pyarrow
> > > > > Array
> > > > > > > > > >>>> displays in UTC time, I believe.
> > > > > > > > > >>>>
> > > > > > > > > >>>> ```
> > > > > > > > > >>>> (Timestamp Array)
> > > > > > > > > >>>> type timestamp[us, tz=America/Los_Angeles]
> > > > > > > > > >>>> [
> > > > > > > > > >>>>  [
> > > > > > > > > >>>>    1969-01-01 09:01:01.000000
> > > > > > > > > >>>>  ]
> > > > > > > > > >>>> ]
> > > > > > > > > >>>>
> > > > > > > > > >>>> (Pandas Conversion)
> > > > > > > > > >>>> 0   1969-01-01 01:01:01-08:00
> > > > > > > > > >>>> Name: _0, dtype: datetime64[ns, America/Los_Angeles]
> > > > > > > > > >>>>
> > > > > > > > > >>>> (Timezone Localized)
> > > > > > > > > >>>> 0   1969-01-01 01:01:01
> > > > > > > > > >>>> Name: _0, dtype: datetime64[ns]
> > > > > > > > > >>>> ```
> > > > > > > > > >>>>
> > > > > > > > > >>>> I'll have to dig in further at another time and debug
> > where
> > > > > the values go
> > > > > > > > > >>>> wrong.
> > > > > > > > > >>>>
> > > > > > > > > >>>> On Sat, Jul 18, 2020 at 9:51 PM Micah Kornfield <
> > > > > emkornfi...@gmail.com>
> > > > > > > > > >>>> wrote:
> > > > > > > > > >>>>
> > > > > > > > > >>>>> +1 (binding)
> > > > > > > > > >>>>>
> > > > > > > > > >>>>> Ran wheel and binary tests on ubuntu 19.04
> > > > > > > > > >>>>>
> > > > > > > > > >>>>> On Fri, Jul 17, 2020 at 2:25 PM Neal Richardson <
> > > > > > > > > >>>>> neal.p.richard...@gmail.com>
> > > > > > > > > >>>>> wrote:
> > > > > > > > > >>>>>
> > > > > > > > > >>>>>> +1 (binding)
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>>> In addition to the usual verification on
> > > > > > > > > >>>>>> https://github.com/apache/arrow/pull/7787, I've
> > > > > successfully staged the
> > > > > > > > > >>>>> R
> > > > > > > > > >>>>>> binary artifacts on Windows (
> > > > > > > > > >>>>>> https://github.com/r-windows/rtools-packages/pull/126
> > ),
> > > > > macOS (
> > > > > > > > > >>>>>> https://github.com/autobrew/homebrew-core/pull/12),
> > and
> > > > > Linux (
> > > > > > > > > >>>>>>
> > https://github.com/ursa-labs/arrow-r-nightly/actions/runs/
> > > > > 172977277)
> > > > > > > > > >>>>> using
> > > > > > > > > >>>>>> the release candidate.
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>>> And I agree with the judgment about skipping a JS
> > release
> > > > > artifact. Looks
> > > > > > > > > >>>>>> like there hasn't been a code change since October so
> > > > > there's no point.
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>>> Neal
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>>> On Fri, Jul 17, 2020 at 10:37 AM Wes McKinney <
> > > > > wesmck...@gmail.com>
> > > > > > > > > >>>>> wrote:
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>>>> I see the JS failures as well. I think it is a
> > failure
> > > > > localized to
> > > > > > > > > >>>>>>> newer Node versions since our JavaScript CI works
> > fine. I
> > > > > don't think
> > > > > > > > > >>>>>>> it should block the release given the lack of
> > development
> > > > > activity in
> > > > > > > > > >>>>>>> JavaScript [1] -- if any JS devs are concerned about
> > > > > publishing an
> > > > > > > > > >>>>>>> artifact then we can skip pushing it to NPM
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>> @Ryan it seems it may be something environment
> > related on
> > > > > your
> > > > > > > > > >>>>>>> machine, I'm on Ubuntu 18.04 and have not seen this.
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>> On
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>>>  * Python 3.8 wheel's tests are failed. 3.5, 3.6
> > and 3.7
> > > > > > > > > >>>>>>>>    are passed. It seems that -larrow and
> > -larrow_python
> > > > > for
> > > > > > > > > >>>>>>>>    Cython are failed.
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>> I suspect this is related to
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>> https://github.com/apache/arrow/commit/
> > > > > 120c21f4bf66d2901b3a353a1f67bac3c3355924#diff-
> > > > > 0f69784b44040448d17d0e4e8a641fe8
> > > > > > > > > >>>>>>> ,
> > > > > > > > > >>>>>>> but I don't think it's a blocking issue
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>> [1]:
> > https://github.com/apache/arrow/commits/master/js
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>> On Fri, Jul 17, 2020 at 9:42 AM Ryan Murray <
> > > > > rym...@dremio.com> wrote:
> > > > > > > > > >>>>>>>>
> > > > > > > > > >>>>>>>> I've tested Java and it looks good. However the
> > verify
> > > > > script keeps
> > > > > > > > > >>>>> on
> > > > > > > > > >>>>>>>> bailing with protobuf related errors:
> > > > > > > > > >>>>>>>>
> > 'cpp/build/orc_ep-prefix/src/orc_ep-build/c++/src/orc_
> > > > > proto.pb.cc'
> > > > > > > > > >>>>> and
> > > > > > > > > >>>>>>>> friends cant find protobuf definitions. A bit odd as
> > > > > cmake can see
> > > > > > > > > >>>>>>> protobuf
> > > > > > > > > >>>>>>>> headers and builds directly off master work just
> > fine.
> > > > > Has anyone
> > > > > > > > > >>>>> else
> > > > > > > > > >>>>>>>> experienced this? I am on ubutnu 18.04
> > > > > > > > > >>>>>>>>
> > > > > > > > > >>>>>>>> On Fri, Jul 17, 2020 at 10:49 AM Antoine Pitrou <
> > > > > anto...@python.org>
> > > > > > > > > >>>>>>> wrote:
> > > > > > > > > >>>>>>>>
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>>> +1 (binding).  I tested on Ubuntu 18.04.
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>>> * Wheels verification went fine.
> > > > > > > > > >>>>>>>>> * Source verification went fine with CUDA enabled
> > and
> > > > > > > > > >>>>>>>>> TEST_INTEGRATION_JS=0 TEST_JS=0.
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>>> I didn't test the binaries.
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>>> Regards
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>>> Antoine.
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>>> Le 17/07/2020 à 03:41, Krisztián Szűcs a écrit :
> > > > > > > > > >>>>>>>>>> Hi,
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> I would like to propose the second release
> > candidate
> > > > > (RC1) of
> > > > > > > > > >>>>>> Apache
> > > > > > > > > >>>>>>>>>> Arrow version 1.0.0.
> > > > > > > > > >>>>>>>>>> This is a major release consisting of 826
> > resolved JIRA
> > > > > > > > > >>>>> issues[1].
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> The verification of the first release candidate
> > (RC0)
> > > > > has failed
> > > > > > > > > >>>>>>> [0], and
> > > > > > > > > >>>>>>>>>> the packaging scripts were unable to produce two
> > > > > wheels. Compared
> > > > > > > > > >>>>>>>>>> to RC0 this release candidate includes additional
> > > > > patches for the
> > > > > > > > > >>>>>>>>>> following bugs: ARROW-9506, ARROW-9504,
> > ARROW-9497,
> > > > > > > > > >>>>>>>>>> ARROW-9500, ARROW-9499.
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> This release candidate is based on commit:
> > > > > > > > > >>>>>>>>>> bc0649541859095ee77d03a7b891ea8d6e2fd641 [2]
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> The source release rc1 is hosted at [3].
> > > > > > > > > >>>>>>>>>> The binary artifacts are hosted at [4][5][6][7].
> > > > > > > > > >>>>>>>>>> The changelog is located at [8].
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> Please download, verify checksums and signatures,
> > run
> > > > > the unit
> > > > > > > > > >>>>>> tests,
> > > > > > > > > >>>>>>>>>> and vote on the release. See [9] for how to
> > validate a
> > > > > release
> > > > > > > > > >>>>>>> candidate.
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> The vote will be open for at least 72 hours.
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> [ ] +1 Release this as Apache Arrow 1.0.0
> > > > > > > > > >>>>>>>>>> [ ] +0
> > > > > > > > > >>>>>>>>>> [ ] -1 Do not release this as Apache Arrow 1.0.0
> > > > > because...
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>> [0]:
> > > > > > > > > >>>>>>>
> > https://github.com/apache/arrow/pull/7778#issuecomment-
> > > > > 659065370
> > > > > > > > > >>>>>>>>>> [1]:
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>> https://issues.apache.org/jira/issues/?jql=project%20%
> > > > > 3D%20ARROW%20AND%20status%20in%20%28Resolved%2C%20Closed%29%20AND%
> > > > > 20fixVersion%20%3D%201.0.0
> > > > > > > > > >>>>>>>>>> [2]:
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>> https://github.com/apache/arrow/tree/
> > > > > bc0649541859095ee77d03a7b891ea8d6e2fd641
> > > > > > > > > >>>>>>>>>> [3]:
> > > > > > > > > >>>>>>> https://dist.apache.org/repos/
> > > > > dist/dev/arrow/apache-arrow-1.0.0-rc1
> > > > > > > > > >>>>>>>>>> [4]: https://bintray.com/apache/
> > > > > arrow/centos-rc/1.0.0-rc1
> > > > > > > > > >>>>>>>>>> [5]: https://bintray.com/apache/
> > > > > arrow/debian-rc/1.0.0-rc1
> > > > > > > > > >>>>>>>>>> [6]: https://bintray.com/apache/
> > > > > arrow/python-rc/1.0.0-rc1
> > > > > > > > > >>>>>>>>>> [7]: https://bintray.com/apache/
> > > > > arrow/ubuntu-rc/1.0.0-rc1
> > > > > > > > > >>>>>>>>>> [8]:
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>> https://github.com/apache/arrow/blob/
> > > > > bc0649541859095ee77d03a7b891ea8d6e2fd641/CHANGELOG.md
> > > > > > > > > >>>>>>>>>> [9]:
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>> https://cwiki.apache.org/confluence/display/ARROW/How+
> > > > > to+Verify+Release+Candidates
> > > > > > > > > >>>>>>>>>>
> > > > > > > > > >>>>>>>>>
> > > > > > > > > >>>>>>>
> > > > > > > > > >>>>>>
> > > > > > > > > >>>>>
> > > > >
> >

Reply via email to