Diego Argueta created ARROW-8378: ------------------------------------ Summary: [Python] "empty" dtype metadata leads to wrong Parquet column type Key: ARROW-8378 URL: https://issues.apache.org/jira/browse/ARROW-8378 Project: Apache Arrow Issue Type: Bug Components: Python Affects Versions: 0.16.0 Environment: Python: 3.7.6 Pandas: 0.24.1, 0.25.3, 1.0.3 Pyarrow: 0.16.0 OS: OSX 10.15.3 Reporter: Diego Argueta
Run the following code with Pandas 0.24.x-1.0.x, and PyArrow 0.16.0 on Python 3.7: {code:python} import pandas as pd import numpy as np df_1 = pd.DataFrame({'col': [None, None, None]}) df_1.col = df_1.col.astype(np.unicode_) df_1.to_parquet('right.parq', engine='pyarrow') series = pd.Series([None, None, None], dtype=np.unicode_) df_2 = pd.DataFrame({'col': series}) df_2.to_parquet('wrong.parq', engine='pyarrow') {code} Examine the Parquet column type for each file (I use [parquet-tools|https://github.com/wesleypeck/parquet-tools]). {{right.parq}} has the expected UTF-8 string type. {{wrong.parq}} has an {{INT32}}. The following metadata is stored in the Parquet files: {{right.parq}} {code:json} { "column_indexes": [], "columns": [ { "field_name": "col", "metadata": null, "name": "col", "numpy_type": "object", "pandas_type": "unicode" } ], "index_columns": [], "pandas_version": "0.24.1" } {code} {{wrong.parq}} {code:json} { "column_indexes": [], "columns": [ { "field_name": "col", "metadata": null, "name": "col", "numpy_type": "object", "pandas_type": "empty" } ], "index_columns": [], "pandas_version": "0.24.1" } {code} The difference between the two is that the {{pandas_type}} for the incorrect file is "empty" rather than the expected "unicode". PyArrow misinterprets this and defaults to a 32-bit integer column. The incorrect datatype will cause Redshift to reject the file when we try to read it because the column type in the file doesn't match the column type in the database table. I originally filed this as a bug in Pandas (see [this ticket|https://github.com/pandas-dev/pandas/issues/25326]) but they punted me over here because the dtype conversion is handled in PyArrow. I'm not sure how you'd handle this here. -- This message was sent by Atlassian Jira (v8.3.4#803005)