Hi all, Assume I have a json file named 'my_data.json' as below.
*{"a": [1, 2], "b": {"c": true, "d": "1991-02-03"}} {"a": [3, 4, 5], "b": {"c": false, "d": "2019-04-01"**}}* If I need to do a join operation based on attribute d, can I do it directly from arrow structs? ( or are there any efficient alternatives?) Also how nested attributes in json format are mapped into buffers once converted in arrow format? (example taken from documentation) >>> table = json.read_json("my_data.json")>>> table pyarrow.Table a: list<item: int64> child 0, item: int64 b: struct<c: bool, d: timestamp[s]> child 0, c: bool child 1, d: timestamp[s]>>> table.to_pandas() a b0 [1, 2] {'c': True, 'd': 1991-02-03 00:00:00}1 [3, 4, 5] {'c': False, 'd': 2019-04-01 00:00:00} Thank You