Hello, I'm just building arrow from source from a fresh checkout; commit: 326015cfc66e1f657cdd6811620137e9e277b43d
Everything seems to build against python 2.7: $python setup.py build_ext --build-type=$ARROW_BUILD_TYPE --with-parquet --with-plasma --inplace {...} Bundling includes: release/include release/gandiva.so Cython module gandiva failure permitted ('Moving generated C++ source', 'lib.cpp', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/lib.cpp') ('Moving built C-extension', 'release/lib.so', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/lib.so') ('Moving generated C++ source', '_csv.cpp', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/_csv.cpp') ('Moving built C-extension', 'release/_csv.so', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/_csv.so') release/_cuda.so Cython module _cuda failure permitted ('Moving generated C++ source', '_parquet.cpp', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/_parquet.cpp') ('Moving built C-extension', 'release/_parquet.so', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/_parquet.so') release/_orc.so Cython module _orc failure permitted ('Moving generated C++ source', '_plasma.cpp', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/_plasma.cpp') ('Moving built C-extension', 'release/_plasma.so', 'to build path', '/home/apalumbo/repos/arrow/python/pyarrow/_plasma.so') {...} running tests though I get: $ py.test pyarrow ImportError while loading conftest '/home/apalumbo/repos/arrow/python/pyarrow/tests/conftest.py'. ../../pyarrow/lib/python2.7/site-packages/six.py:709: in exec_ exec("""exec _code_ in _globs_, _locs_""") pyarrow/tests/conftest.py:20: in <module> import hypothesis as h E ImportError: No module named hypothesis after a pip install of `hypothesis` in my venv, (Python 2.7) I am able to run the tests. Several fail right off the bat (seems like many of the errors are Pandas-related (see bottom for stack trace): Switching to a virtualenv Running Python 3.5, the build fails: $make -j4 {...} make[2]: *** [src/arrow/python/CMakeFiles/arrow_python_objlib.dir/benchmark.cc.o] Error 1 CMakeFiles/Makefile2:1862: recipe for target 'src/arrow/python/CMakeFiles/arrow_python_objlib.dir/all' failed make[1]: *** [src/arrow/python/CMakeFiles/arrow_python_objlib.dir/all] Error 2 make[1]: *** Waiting for unfinished jobs.... -- glog_ep install command succeeded. See also /home/apalumbo/repos/arrow/cpp/build/glog_ep-prefix/src/glog_ep-stamp/glog_ep-install-*.log [ 40%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/common.cc.o [ 40%] Completed 'glog_ep' [ 40%] Built target glog_ep [ 41%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/eviction_policy.cc.o [ 41%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/events.cc.o [ 42%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/fling.cc.o [ 42%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/io.cc.o [ 43%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/malloc.cc.o [ 43%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/plasma.cc.o [ 44%] Building CXX object src/plasma/CMakeFiles/plasma_objlib.dir/protocol.cc.o [ 44%] Building C object src/plasma/CMakeFiles/plasma_objlib.dir/thirdparty/ae/ae.c.o [ 44%] Built target plasma_objlib -- jemalloc_ep build command succeeded. See also /home/apalumbo/repos/arrow/cpp/build/jemalloc_ep-prefix/src/jemalloc_ep-stamp/jemalloc_ep-build-*.log [ 45%] Performing install step for 'jemalloc_ep' -- jemalloc_ep install command succeeded. See also /home/apalumbo/repos/arrow/cpp/build/jemalloc_ep-prefix/src/jemalloc_ep-stamp/jemalloc_ep-install-*.log [ 45%] Completed 'jemalloc_ep' [ 45%] Built target jemalloc_ep Makefile:138: recipe for target 'all' failed make: *** [all] Error 2 Any thoughts? I', building with the instructions from https://arrow.apache.org/docs/python/development.html#development Thanks in advance, Andy Partial stack trace (python 2.7) : $py.test pyarrow {...} [5000 rows x 1 columns] schema = None, preserve_index = False, nthreads = 16, columns = None, safe = True def dataframe_to_arrays(df, schema, preserve_index, nthreads=1, columns=None, safe=True): names, column_names, index_columns, index_column_names, \ columns_to_convert, convert_types = _get_columns_to_convert( df, schema, preserve_index, columns ) # NOTE(wesm): If nthreads=None, then we use a heuristic to decide whether # using a thread pool is worth it. Currently the heuristic is whether the # nrows > 100 * ncols. if nthreads is None: nrows, ncols = len(df), len(df.columns) if nrows > ncols * 100: nthreads = pa.cpu_count() else: nthreads = 1 def convert_column(col, ty): try: return pa.array(col, type=ty, from_pandas=True, safe=safe) except (pa.ArrowInvalid, pa.ArrowNotImplementedError, pa.ArrowTypeError) as e: e.args += ("Conversion failed for column {0!s} with type {1!s}" .format(col.name, col.dtype),) raise e if nthreads == 1: arrays = [convert_column(c, t) for c, t in zip(columns_to_convert, convert_types)] else: > from concurrent import futures E ImportError: No module named concurrent pyarrow/pandas_compat.py:430: ImportError ___________________________________________________ test_compress_decompress ___________________________________________________ def test_compress_decompress(): INPUT_SIZE = 10000 test_data = (np.random.randint(0, 255, size=INPUT_SIZE) .astype(np.uint8) .tostring()) test_buf = pa.py_buffer(test_data) codecs = ['lz4', 'snappy', 'gzip', 'zstd', 'brotli'] for codec in codecs: > compressed_buf = pa.compress(test_buf, codec=codec) pyarrow/tests/test_io.py:508: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ pyarrow/io.pxi:1340: in pyarrow.lib.compress check_status(CCodec.Create(c_codec, &compressor)) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ > raise ArrowNotImplementedError(message) E ArrowNotImplementedError: ZSTD codec support not built pyarrow/error.pxi:89: ArrowNotImplementedError _______________________________________________ test_compressed_roundtrip[zstd] ________________________________________________ compression = 'zstd' @pytest.mark.parametrize("compression", ["bz2", "brotli", "gzip", "lz4", "zstd"]) def test_compressed_roundtrip(compression): data = b"some test data\n" * 10 + b"eof\n" raw = pa.BufferOutputStream() try: > with pa.CompressedOutputStream(raw, compression) as compressed: pyarrow/tests/test_io.py:1045: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ pyarrow/io.pxi:1149: in pyarrow.lib.CompressedOutputStream.__init__ self._init(stream, compression_type) pyarrow/io.pxi:1162: in pyarrow.lib.CompressedOutputStream._init _make_compressed_output_stream(stream.get_output_stream(), pyarrow/io.pxi:1087: in pyarrow.lib._make_compressed_output_stream check_status(CCodec.Create(compression_type, &codec)) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ > raise ArrowNotImplementedError(message) E ArrowNotImplementedError: ZSTD codec support not built pyarrow/error.pxi:89: ArrowNotImplementedError __________________________________________ test_pandas_serialize_round_trip_nthreads ___________________________________________ def test_pandas_serialize_round_trip_nthreads(): index = pd.Index([1, 2, 3], name='my_index') columns = ['foo', 'bar'] df = pd.DataFrame( {'foo': [1.5, 1.6, 1.7], 'bar': list('abc')}, index=index, columns=columns ) > _check_serialize_pandas_round_trip(df, use_threads=True) pyarrow/tests/test_ipc.py:536: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ pyarrow/tests/test_ipc.py:514: in _check_serialize_pandas_round_trip buf = pa.serialize_pandas(df, nthreads=2 if use_threads else 1) pyarrow/ipc.py:163: in serialize_pandas preserve_index=preserve_index) pyarrow/table.pxi:864: in pyarrow.lib.RecordBatch.from_pandas names, arrays, metadata = pdcompat.dataframe_to_arrays( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ df = foo bar my_index 1 1.5 a 2 1.6 b 3 1.7 c, schema = None preserve_index = True, nthreads = 2, columns = None, safe = True def dataframe_to_arrays(df, schema, preserve_index, nthreads=1, columns=None, safe=True): names, column_names, index_columns, index_column_names, \ columns_to_convert, convert_types = _get_columns_to_convert( df, schema, preserve_index, columns ) # NOTE(wesm): If nthreads=None, then we use a heuristic to decide whether # using a thread pool is worth it. Currently the heuristic is whether the # nrows > 100 * ncols. if nthreads is None: nrows, ncols = len(df), len(df.columns) if nrows > ncols * 100: nthreads = pa.cpu_count() else: nthreads = 1 def convert_column(col, ty): try: return pa.array(col, type=ty, from_pandas=True, safe=safe) except (pa.ArrowInvalid, pa.ArrowNotImplementedError, pa.ArrowTypeError) as e: e.args += ("Conversion failed for column {0!s} with type {1!s}" .format(col.name, col.dtype),) raise e if nthreads == 1: arrays = [convert_column(c, t) for c, t in zip(columns_to_convert, convert_types)] else: > from concurrent import futures E ImportError: No module named concurrent pyarrow/pandas_compat.py:430: ImportError ======================================================= warnings summary ======================================================= pyarrow/tests/test_convert_pandas.py::TestConvertMetadata::test_empty_list_metadata /home/apalumbo/repos/pyarrow/lib/python2.7/site-packages/pandas/core/dtypes/missing.py:431: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if left_value != right_value: /home/apalumbo/repos/pyarrow/lib/python2.7/site-packages/pandas/core/dtypes/missing.py:431: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if left_value != right_value: /home/apalumbo/repos/pyarrow/lib/python2.7/site-packages/pandas/core/dtypes/missing.py:431: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if left_value != right_value: pyarrow/tests/test_convert_pandas.py::TestListTypes::test_column_of_lists_first_empty /home/apalumbo/repos/pyarrow/lib/python2.7/site-packages/pandas/core/dtypes/missing.py:431: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if left_value != right_value: pyarrow/tests/test_convert_pandas.py::TestListTypes::test_empty_list_roundtrip /home/apalumbo/repos/pyarrow/lib/python2.7/site-packages/pandas/core/dtypes/missing.py:431: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if left_value != right_value: /home/apalumbo/repos/pyarrow/lib/python2.7/site-packages/pandas/core/dtypes/missing.py:431: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if left_value != right_value: /home/apalumbo/repos/pyarrow/lib/python2.7/site-packages/pandas/core/dtypes/missing.py:431: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if left_value != right_value: -- Docs: https://docs.pytest.org/en/latest/warnings.html ========================== 45 failed, 997 passed, 194 skipped, 3 xfailed, 7 warnings in 33.14 seconds ========================== (pyarrow)