Hatem Helal created ARROW-3564: ---------------------------------- Summary: pyarrow: writing version 2.0 parquet format with dictionary encoding enabled Key: ARROW-3564 URL: https://issues.apache.org/jira/browse/ARROW-3564 Project: Apache Arrow Issue Type: Bug Components: C++, Python Affects Versions: 0.11.0 Reporter: Hatem Helal Attachments: example_v1.0_dict_False.parquet, example_v1.0_dict_True.parquet, example_v2.0_dict_False.parquet, example_v2.0_dict_True.parquet, pyarrow_repro.py
Using pyarrow v0.11.0, the following script writes a simple table (lifted from the [pyarrow doc|https://arrow.apache.org/docs/python/parquet.html]) to both parquet format versions 1.0 and 2.0, with and without dictionary encoding enabled. |{{import}} {{pyarrow.parquet as pq}} {{import}} {{numpy as np}} {{import}} {{pandas as pd}} {{import}} {{pyarrow as pa}} {{import}} {{itertools}} {{df }}{{=}} {{pd.DataFrame({}}{{'one'}}{{: [}}{{-}}{{1}}{{, np.nan, }}{{2.5}}{{],}} {{ }}{{'two'}}{{: [}}{{'foo'}}{{, }}{{'bar'}}{{, }}{{'baz'}}{{],}} {{ }}{{'three'}}{{: [}}{{True}}{{, }}{{False}}{{, }}{{True}}{{]},}} {{ }}{{index}}{{=}}{{list}}{{(}}{{'abc'}}{{))}} {{table }}{{=}} {{pa.Table.from_pandas(df)}} {{use_dict }}{{=}} {{[}}{{True}}{{, }}{{False}}{{]}} {{version }}{{=}} {{[}}{{'1.0'}}{{, }}{{'2.0'}}{{]}} {{for}} {{tf, v }}{{in}} {{itertools.product(use_dict, version):}} {{ }}{{filename }}{{=}} {{'example_v'}} {{+}} {{v }}{{+}} {{'_dict_'}} {{+}} {{str}}{{(tf) }}{{+}} {{'.parquet'}} {{ }}{{pq.write_table(table, filename, use_dictionary}}{{=}}{{tf, version}}{{=}}{{v)}}| Inspecting the written files using [parquet-tools|https://github.com/apache/parquet-mr/tree/master/parquet-tools] appears to show that dictionary encoding is not used in either of the version 2.0 files. Both files report that the columns are encoded using {{PLAIN,RLE}} and that the dictionary page offset is zero. I was expecting that the column encoding would include {{RLE_DICTIONARY}}. Attached are the script with repro steps and the files that were generated by it. Below is the output of using {{parquet-tools meta}} on the version 2.0 files {panel:title=version='2.0', use_dictionary = True} {panel} |{{% parquet-tools meta example_v2.0_dict_True.parquet}} {{file: file:.../example_v2.0_dict_True.parquet}} {{creator: parquet-cpp version 1.5.1-SNAPSHOT}} {{extra: pandas = \{"pandas_version": "0.23.4", "index_columns": ["__index_level_0__"], "columns": [{"metadata": null, "field_name": "one", "name": "one", "numpy_type": "float64", "pandas_type": "float64"}, \{"metadata": null, "field_name": "three", "name": "three", "numpy_type": "bool", "pandas_type": "bool"}, \{"metadata": null, "field_name": "two", "name": "two", "numpy_type": "object", "pandas_type": "bytes"}, \{"metadata": null, "field_name": "__index_level_0__", "name": null, "numpy_type": "object", "pandas_type": "bytes"}], "column_indexes": [\{"metadata": null, "field_name": null, "name": null, "numpy_type": "object", "pandas_type": "bytes"}]}}} {{file schema: schema}} {{--------------------------------------------------------------------------------}} {{one: OPTIONAL DOUBLE R:0 D:1}} {{three: OPTIONAL BOOLEAN R:0 D:1}} {{two: OPTIONAL BINARY R:0 D:1}} {{__index_level_0__: OPTIONAL BINARY R:0 D:1}} {{row group 1: RC:3 TS:211 OFFSET:4}} {{--------------------------------------------------------------------------------}} {{one: DOUBLE SNAPPY DO:0 FPO:4 SZ:65/63/0.97 VC:3 ENC:PLAIN,RLE ST:[min: -1.0, max: 2.5, num_nulls: 1]}} {{three: BOOLEAN SNAPPY DO:0 FPO:142 SZ:36/34/0.94 VC:3 ENC:PLAIN,RLE ST:[min: false, max: true, num_nulls: 0]}} {{two: BINARY SNAPPY DO:0 FPO:225 SZ:60/58/0.97 VC:3 ENC:PLAIN,RLE ST:[min: 0x626172, max: 0x666F6F, num_nulls: 0]}} {{__index_level_0__: BINARY SNAPPY DO:0 FPO:328 SZ:50/48/0.96 VC:3 ENC:PLAIN,RLE ST:[min: 0x61, max: 0x63, num_nulls: 0]}}| {panel:title=version='2.0', use_dictionary = False} {panel} |{{% parquet-tools meta example_v2.0_dict_False.parquet}} {{file: file:.../example_v2.0_dict_False.parquet}} {{creator: parquet-cpp version 1.5.1-SNAPSHOT}} {{extra: pandas = \{"pandas_version": "0.23.4", "index_columns": ["__index_level_0__"], "columns": [{"metadata": null, "field_name": "one", "name": "one", "numpy_type": "float64", "pandas_type": "float64"}, \{"metadata": null, "field_name": "three", "name": "three", "numpy_type": "bool", "pandas_type": "bool"}, \{"metadata": null, "field_name": "two", "name": "two", "numpy_type": "object", "pandas_type": "bytes"}, \{"metadata": null, "field_name": "__index_level_0__", "name": null, "numpy_type": "object", "pandas_type": "bytes"}], "column_indexes": [\{"metadata": null, "field_name": null, "name": null, "numpy_type": "object", "pandas_type": "bytes"}]}}} {{file schema: schema}} {{--------------------------------------------------------------------------------}} {{one: OPTIONAL DOUBLE R:0 D:1}} {{three: OPTIONAL BOOLEAN R:0 D:1}} {{two: OPTIONAL BINARY R:0 D:1}} {{__index_level_0__: OPTIONAL BINARY R:0 D:1}} {{row group 1: RC:3 TS:211 OFFSET:4}} {{--------------------------------------------------------------------------------}} {{one: DOUBLE SNAPPY DO:0 FPO:4 SZ:65/63/0.97 VC:3 ENC:PLAIN,RLE ST:[min: -1.0, max: 2.5, num_nulls: 1]}} {{three: BOOLEAN SNAPPY DO:0 FPO:142 SZ:36/34/0.94 VC:3 ENC:PLAIN,RLE ST:[min: false, max: true, num_nulls: 0]}} {{two: BINARY SNAPPY DO:0 FPO:225 SZ:60/58/0.97 VC:3 ENC:PLAIN,RLE ST:[min: 0x626172, max: 0x666F6F, num_nulls: 0]}} {{__index_level_0__: BINARY SNAPPY DO:0 FPO:328 SZ:50/48/0.96 VC:3 ENC:PLAIN,RLE ST:[min: 0x61, max: 0x63, num_nulls: 0]}}| -- This message was sent by Atlassian JIRA (v7.6.3#76005)